Limitation of Liability

Information in this document is subject to change without notice.

THE TRADING SIGNALS, INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES,
PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, SEARCH STRATEGIES, MODELS,
FUNCTIONS AND TRADING STRATEGIES (AND PARTS THEREOF) IN THIS BOOK ARE
EXAMPLES ONLY, AND HAVE BEEN INCLUDED SOLELY FOR EDUCATIONAL PURPOSES.
TRADESTATION TECHNOLOGIES DOES NOT RECOMMEND THAT YOU USE ANY SUCH
TRADING SIGNALS, INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES,
PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, SEARCH STRATEGIES, MODELS,
FUNCTIONS, OR TRADING STRATEGIES (OR ANY PARTS THEREOF), AS THE USE OF ANY
SUCH TRADING SIGNALS, INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES,
PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, SEARCH STRATEGIES, MODELS,
FUNCTIONS AND TRADING STRATEGIES DOES NOT GUARANTEE THAT YOU WILL MAKE
PROFITS, INCREASE PROFITS, OR MINIMIZE LOSSES. THE SOLE INTENDED USES OF THE
TRADING SIGNALS, INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES,
PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, SEARCH STRATEGIES, MODELS,
FUNCTIONS, AND TRADING STRATEGIES INCLUDED IN THIS BOOK ARE TO DEMONSTRATE
HOW EASYLANGUAGE CAN BE USED TO DESIGN THEM.

TRADESTATION TECHNOLOGIES, INC. IS NOT ENGAGED IN RENDERING ANY INVESTMENT
OR OTHER PROFESSIONAL ADVICE. IF INVESTMENT OR OTHER PROFESSIONAL ADVICE IS
REQUIRED, THE SERVICES OF A LICENSED PROFESSIONAL SHOULD BE SOUGHT.

Copyright © 2001 TradeStation Technologies, Inc. All rights reserved. No part of this publication may be re-
produced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise, without prior written permission of TradeStation Technologies, Inc. Printed
in the United States of America.

TradeStation®, SuperCharts®, OptionStation®, RadarScreen®, ProSuite®, PowerEditor®, and
EasylLanguage® are registered trademarks of TradeStation Technologies, Inc. ProbabilityMap, ActivityBar,
PaintBar and ShowMe are trademarks of TradeStation Technologies, Inc. Microsoft is a registered trademark
of Microsoft Corporation and MS-DOS and Windows are trademarks of Microsoft Corporation.

Contents

CHAPTER: 1 - INtroduCtioncccoooreiiiiniieiescseeee e 1
What iS EQSYLANGUAGE? ...ecvvereeeiieeieiesiesiesieseeseesieseeseeteesestessessestessesressesaeseessessesensessessessenes 2
WhHat Can YOU CrEAE?cviirvereiiiirreeieres et 2
AUAITIONA] RESOUITESeevivriiicsrereeee et en e 3
CHAPTER: 2 - The Basic EasyLanguage Elementscccccccevvenen. 5
How EasylLanguage is EValuated ... e 6
ADOUL the LANGUAGE ...eeeeiieiiee ettt et see s 10
ReferenCing PriCe DAtccoiiiiirieie it bbb 11
EXPressions and OPEFALOISc.cuioiiiriiierienierie e see ettt sbe st b et see e sne e 12
Referencing Previous VAIUES ..ot s 17
Manipulating Dates and TIMEScccoeiiiiiiierine ettt sreenas 20
USING VANTDIES ...t bbb et 25
USING TNPULS <.ttt ettt eb ettt b et bt b s e et e bt esae b e 30
EasyLanguage Control StrUCTUIESccoiiiiiieiiireceieseete e 33
WWIIEING ALBIES ..ottt ettt b e b e b bbb s e seaneeneas 39
UNAEISTANGING ATTAYS ..ottt sttt sttt bbb bbb sbe st e b sbe e see e e e ereenas 45
Understanding USEr FUNCLIONSocooiiiiiiiiie sttt s 50
OULPUL IMIBENOAS ...ttt bbbttt s b e 64
Drawing Text 0N Price ChartScooeiiiiiiieieie e 76
Drawing Trendlines 0N Price Charts ... 89
Understanding QUOLE FIEldScc.ooeiiiiiiiiie e e 109
Multimedia and EaSYLaNQUAOEccccoeieriieieiieieeieie et s 110
CHAPTER: 3 - EasyLanguage for TradeStationc.cccoevrene. 115
WIiting Trading SIgNalScooeiiiiiiiie e 116
The Trading Strategy Testing ENGINe ... 117
TrAGING VEIDS ..ot bbb 131

Understanding BUilt-iN STOPScvioeiiiiiiiiiiie e s 144

ii Contents
Writing INdicators and STUAIESooeiiiiiiiiieiee e 148
Writing ShowMe and PaintBar StUIEScocoieiiiiieniiee e 154
Writing ProbabilityMap STUAIESoouiiiiiiiiee e e 159
Writing ACHIVItYBAr STUIESc.oviiiiiieiiiece et ebe e 166
CHAPTER: 4 - EasyLanguage for RadarSCcreenccccccocevveeeivennenne 179
Writing RadarSCreen INAICALOrScooieiiiiiiiie e 180
Writing Indicators for SUPErCharts SE ... e 185
Specifying Availability Of INICAIOrScooiiiiiiiiic e 191
CHAPTER: 5 - EasyLanguage for OptionStationcc.ccoeceeevivennene. 193
OptionStation Data ANAIYSIScivereieeiieeeese sttt se e e nreens 194
Reading OptioNStation DAtaccviveeriiiierisiee et sre e 195
Writing OptionStation INAICALOTSccvvviiiirieieecse e 204
Writing Indicators for SUPErCharts SEc.ccoviieiieiiiie s 208
WIItiNg SEAICH SIAtEOIES ...eveveeeerieieiisie ettt nr e e ne e 214
Writing OptionStation MOEIScvoviviiiiric e 221
OptionStation Global Variablescccccceeeiriiiiiirisi s 233
CHAPTER: 6 - EasyLanguage and Other Languagesccccocervennne. 235
Defining @ DLL FUNCLIONcviiiiiiiiiicice ettt sne st s 236
UsiNg FUNCLIONS FrOM DLLSooviiiieicieise ettt ste et s 238
More About the EasyLanguage DLL EXtension Kitcc.ccccviviirinnevincnneesce e 239
APPENDIX A: - EasyLanguage Syntax Errorscccccooevieiieeninninne 241
APPENDIX B: - EasyLanguage Colors, Widths & Codes 273
APPENDIX C: - Reserved Words Quick Referenceccccccevveviinnnns 275

CHAPTER 1

Introduction

This book is a comprehensive reference for EasyLanguage, TradeStation Technologies’
industry-standard computer language. It explains in detail the capabilities of the language
and its structure, using examples throughout to illustrate the concepts and syntax
presented.

This book first covers the basic elements of EasyLanguage common to the TradeStation
Technologies products—TradeStation, RadarScreen, and OptionStation—and then
delves more deeply into the EasyLanguage specifically for use with each.

This book covers EasyLanguage concepts in the context of the products; it does not
provide procedural information on using the EasyLanguage PowerEditor or the
TradeStation Technologies products or the user interface. All procedural instructions are
covered in the Online User Manual.

The appendixes at the back of the book contain two useful references: a reserved word

quick reference and the EasylL anguage syntax errors. The reserved word quick reference
is a complete list of the EasyLanguage reserved words, listed alphabetically. The syntax
error list is a complete list of the verification syntax errors generated by the PowerEditor,
listed by error number. You’ll find this useful when troubleshooting your EasyLanguage.

In This Chapter
® What is EasyLanguage?ccoceoevenenenee 2
® What Can You Create?...........cccccvrrrerrnnne. 2

B Additional RESOUICESc.ccovevvverreennene. 3

2 Whatis EasyLanguage? CHAPTER 1

What is EasyLanguage?

EasyLanguage is a simple, but powerful, computer language that enables you to create
your own custom trading and technical analysis tools. By combining common trading
terminology with simple decision statements, EasyLanguage makes it easy for you to
write your own trading rules and actions in a clear and straightforward manner.

Simply put, TradeStation, RadarScreen, or OptionStation reads your EasylL anguage
statements, evaluates them based on the price data that has been collected, and performs
the specified actions.

What Can You Create?

EasylLanguage enables you to create your own trading signals, indicators, studies, search
strategies, models, and functions. Or, if you choose, you can copy and modify any of the
hundreds of built-in trading signals, analysis techniques, and functions that are included
with the TradeStation Technologies products.

The types of trading and technical analysis tools you can create for each TradeStation Tech-
nologies product are:

TradeStation

= Indicators (chart-based)

= ShowMe Studies

m PaintBar Studies

m ActivityBar Studies

= ProbabilityMap Studies

m Trading Signals (to form Trading Strategies)
= Functions

RadarScreen
m Indicators (grid-based)

m Functions

OptionStation
m Indicators (grid-based)

m Search Strategies
= Pricing Models

= Volatility Models
= Bid/Ask Models

Introduction

Additional Resources 3

= Functions
SuperCharts SE (included with RadarScreen and OptionStation)
= Indicators (chart-based)

Your TradeStation Technologies product can store a total of 1,000 ActivityBar studies,
1,000 functions, 1,000 trading signals and trading strategies (combined), and 1,000
indicators, ShowMe studies, PaintBar studies, ProbabilityMap studies, search
strategies, and models (combined). Keep this limit in mind when creating your trading
signals, analysis techniques, and functions.

Additional Resources

To reduce your EasyLanguage learning curve, TradeStation Technologies provides the fol-
lowing educational and support resources:

Learning to Use EasyLanguage Book

It is easiest to learn a computer language step by step, following a structured outline, build-
ing upon examples, and practicing what you’ve learned along the way. The Learning to Use
EasyLanguage book included with your TradeStation Technologies product provides step-
by-step learning, and we strongly suggest you use it as your introduction to EasyLanguage,
or as a refresher before delving into this reference.

EasyLanguage Support Center

The EasyLanguage Support Center provides various resources to help you create your trad-
ing and technical analysis tools, including access to technical support, a list of
EasyLanguage solution providers, and analysis techniques you can download and import
into your EasyLanguage PowerEditor.

To access the EasyLanguage Support Center, visit:

http://www.tradestationtechnologies.com/support/easylanguage.shtm

4 Additional Resources CHAPTER 1

CHAPTER 2

The Basic EasyLanguage Elements

EasyLanguage is the industry standard language used to describe trading ideas, and it is the
most powerful, versatile, and easy to use customization tool used by traders world wide.
But how does it work? This chapter answers that question, and introduces you to the
syntax, grammar, control structures, and general concepts that are the foundation for
EasyLanguage.

This chapter discusses how EasylLanguage performs its calculations, and provides a solid
foundation for you to begin working with one or more TradeStation Technologies
products—TradeStation, OptionStation, or RadarScreen.

In This Chapter

m How EasylLanguage is Evaluated............. 6 B Writing AlertsS.......coooeevieiinenenecneene 39
B About the Languagecccoevvvvrnienenns 10 B Understanding Arraysc.ccococveeeevnennns 45
m Referencing Price Data..........cccccovvueenn 11 ® Understanding User Functions............... 50
m Expressions and Operators................... 12 B Output Methods..........coovviviiiiines 64
m Referencing Previous Values 17 m Drawing Text on Price Charts................ 76
® Manipulating Dates and Times 20 m Drawing Trendlines on Price Charts....... 89
m Using Variables........ccooooiiniiininennne 25 m Understanding Quote Fields................. 109
B USING INPULS ..oovviicicecc s 30 ® Multimedia and EasyLanguage............ 110

m EasylLanguage Control Structures.......... 33

6 How EasylLanguage is Evaluated CHAPTER 2

How EasylLanguage is Evaluated

Regardless of what type of trading or technical analysis tool you’re writing—an indicator,
trading signal, search strategy, etc.—the first step is understanding how EasyLanguage
evaluates data.

EasyLanguage and Price Charts

A price chart typically consists of a number of bars built from price data associated with a
specified trading instrument. Each bar summarizes the prices for a trading interval—most
commonly a time period such as five minutes or one day—and includes values such as the
open, high, low, and closing prices for that period. Other bar data such as the date and time
of the bar’s close, the volume, and the open interest is also available for each bar.

One of the main uses of EasylLanguage is to evaluate price data from one bar and compare
it to data from other bars; therefore, it is important to understand how an

EasyLanguage trading signal, analysis technique (i.e., indicator, study, search strategy or
model) or function evaluates the price data on a price chart and performs its analysis.

Let’s look at a simple one-line trading signal:

If the Close > High of 1 Bar Ago Then Buy at Market;

This simple statement is instructing EasyLanguage to compare the closing price of one bar
with the high price of another, and to generate a buy order for the open of the next bar when
the close is greater than the high. This comparison is made on the closing price of every bar
in the chart, each time referencing the high price of the preceding bar.

Assume you have incorporated the above trading signal into a trading strategy that you’ve
applied to a chart. Even though your trading strategy is applied to a chart filled with many
different bars, the information that is evaluated for each bar is always the same (i.e., close
price, volume, high price, etc.). Remember, a chart is a visual representation of a period of
trading history for a symbol, where individual bars represent trading intervals.

To evaluate your chart, EasylLanguage evaluates the price data from the very first bar in the
chart to the most recent bar on the chart. In terms of your trading signal, analysis technique,
or function, the bar being evaluated is considered the current bar (thus, at some point, every
bar on the chart is considered to be the current bar). The EasyLanguage statements in your
procedure are always evaluated relative to the current bar.

Now, on the first bar of the chart, there are no previous bars so the comparison in the
example above cannot be performed. Thus, the trading strategy would have to wait un-
til the second bar of the chart in order to perform any calculation. This is called ‘max-
imum number of bars the study will reference’ or MaxBarsBack. This concept is
discussed in detail on page 18.

When your procedure is done evaluating the current bar, EasyLanguage steps forward to
the next bar in the chart, making it the bar on which the statements in your procedure are
evaluated, or the current bar.

Typically, a trading signal, analysis technique or function includes a number of instruc-
tions, each of which can result in an action; for example, an indicator will display a value,

The Basic EasyLanguage Elements How EasyLanguage is Evaluated 7

and a trading signal will generate a buy or sell order. Once all the EasyLanguage instruc-
tions are processed for the current bar, the price data from the next bar is read and the in-
structions are evaluated using the new prices. This continues across the chart from left to
right, until all of the bars from the chart are read and analyzed. Using the trading signal ex-
ample, the result is that for a 500-bar chart, the instructions are evaluated a total of 499
times, once for each bar (except the first bar, when there is not enough data to perform the
calculation).

For example, look at the chart shown in Figure 2-1, consisting of bars A through H, to
which we applied an indicator named HiLoPlot. Each statement within the indicator is eval-
uated from the first line of EasyLanguage to the last, and for every bar of the chart, one at
a time, starting with the price data from bar A, then from bar B, etc. across all of the bars
in the chart.

Statements are evaluated for every bar,
from the left most bar to the right (A ... H)
B

L 4

@

-

Statements are read from the first line
to the last line

%8 HiL oPlot [Indicator] [_ IO} =
Variables: HighLine{0), LowLine(0); = E
Highline=Highest(High,10) of 1 bar ago: L
LowlLine=Lowest(Low,10) of 1 bar ago:

Plotl (HighLine) ;
PlotZ(Lowline) ;

Figure 2-1. Evaluating bars from the first line to the last, and left to right

Even though the EasylLanguage instructions might not be clear at this time, it’s
important that you understand that each instruction is evaluated, in order from the first
line to the last, for every bar of the chart, one at a time.

EasyLanguage and Grids

You can also apply indicators to grid windows, such as RadarScreen and the OptionStation
Position Analysis Window.

When thinking about analysis techniques on price charts, we think in terms of analyzing
past data in order to display information about the current market; applying indicators to
grids is no different.

A grid allows us to analyze and view the results of multiple trading instruments simulta-
neously. As with price charts, past values are available for the analysis. For example, a

8 How EasylLanguage is Evaluated CHAPTER 2

10-bar moving average will be able to reference the close of the last 10 bars in any grid
window.

Because the objective of grid applications is to analyze multiple trading instruments at the
same time, they are optimized to use as little data as needed (to save memory and increase
calculation speed). Due to this optimization feature, most indicators are defaulted to calcu-
late only on the most recent bar, or trading interval, and to load only the necessary data.

Let’s elaborate on this concept. When an indicator is applied to a grid window, EasyLan-

guage determines the maximum number of bars the indicator needs to perform its calcula-
tions, and passes this number to the application (i.e., RadarScreen or OptionStation). The

application then obtains as much data as necessary for the EasyLanguage indicator to per-
form its calculations. But again, it is important to remember that the application will only
obtain enough data to calculate the result of the indicator based on the most recent bar of

the trading instrument.

So, if a 10-bar moving average indicator is applied to RadarScreen, RadarScreen will load
10 bars worth of data for every symbol on the page, and it will calculate the 10-bar average
for each symbol for the last bar only.

This method works very well for most indicators, but it also implies that if you are calcu-
lating a cumulative or recursive indicator (i.e., one that uses a running total to calculate the
current value or references previous values of the indicator), you will not get the same re-
sults with a grid as you would on a price chart.

A simple example that illustrates this point is an indicator that keeps a running total of the
volume. If you apply this indicator to a price chart that has a year’s worth of bars, you will
end with the yearly trading volume, whereas if you apply it to a grid window that has only
one day’s worth, you will end with the daily trading volume.

Because of this, there is a setting in the Format dialog box for all indicators when applied
to grid windows that allows you to specify how many additional bars to use when calculat-

The Basic EasyLanguage Elements How EasyLanguage is Evaluated 9

ing that particular indicator. This setting is under the General tab when formatting an in-
dicator, and is called Load additional data for accumulative calculations (Figure 2-2).

Format Indicator: Accum Distribution for OMGA

General | Inputsl Style I Colar I

Mame: Short name:
IAccum Distribution AccumnDist
Motes:
¥ Update an every tick M_aximum number of bars study - -
I~ Enable Alert W('E'je'fn;j : Note: Enabling this feature affects
T : * Auto-detec .
I | isetz et e € sordenec: [0 the calculation speed, as more data

must be loaded for all symbols in the
grid application.

v Load additional data for accumulative calculations

ddditional bars to load: I a0
Presiew
AccumDist
1 Same az Price
2 Same az Price
QK | Cancel | Help |

Figure 2-2. Load additional data for cumulative calculations

When a number other than zero is specified for this setting, the grid window will load as
many bars as necessary to calculate the indicator, plus whatever number of bars specified
by this setting. Then, the indicator will be evaluated for every one of these bars starting
from the oldest bar and stepping forward to the most current bar, and displays the most re-
cent value of the indicator.

Another and more complex example of where this setting is necessary is the Accumulation
Distribution Indicator. Essentially, the EasyLanguage instructions for this indicator read as
follows:

If the close of the current bar is greater than the close of the previous bar, then add the
volume to a running total. If not, then subtract the volume from the running total.
Display the result on every bar.

In order for this indicator to calculate and return a value, it needs the current bar’s data, and
the data of one bar ago (in order to find if the current bar is an up or down bar); therefore,
it needs a total of two bars. When this indicator is applied to a grid window without loading
any additional data, it loads two bars of data and compares the current close with the close
of one bar ago, and it displays the current bar’s volume as a positive or negative number.

In order for the indicator to step through a number of bars and calculate the value of the
indicator as it would on a price chart with the same data, the desired number of bars must
be specified under the Load additional data for accumulative calculations setting illus-
trated in Figure 2-2.

10 About the Language CHAPTER 2

About the Language

There are certain basic elements in EasyLanguage that apply regardless of what type of
trading or technical analysis tool you are writing; you’ll use these elements whenever you
work with EasyLanguage. Once we cover these basics, we’ll move on to the specifics of
writing EasylLanguage trading signals, indicators, studies, search strategies, models, and
functions.

Statements

An EasyLanguage statement represents a complete instruction. Statements can contain re-
served words, operators, and punctuation marks, and always end in a semicolon. For exam-
ple:

Buy 100 Shares on the Next Bar at 100 Stop ;

Reserved Words

The basic vocabulary of EasylLanguage consists of a set of pre-defined words, which
we call reserved words. Reserved words each have a specific meaning or purpose; for
example, to display values or create objects in a window, perform a trading action, or
evaluate and manipulate data.

As we cover each topic, we will introduce and describe the reserved words required to
use the particular EasyLanguage feature.

Operators

Operators are symbols that represent an operation; for example, a plus sign is an
operator representing the addition of two values. There are many different kinds of
operators available for your use in EasyLanguage: mathematical, relational, string,
and logical. These are described in detail in the section titled, “Expressions and
Operators,” on page 12.

Punctuation Marks

There are a number of punctuation marks that you will use often as you write EasyLan-
guage to establish statements, define parameters, delimit words, and establish order of pre-
cedence.

For example, EasyLanguage uses the semicolon (;) to mark the end of each statement.
Punctuation marks are considered reserved words, because they are a part of the structure
of the language. The following punctuation marks are recognized in EasylLanguage:

Symbol Name Description
; Semicolon Ends a statement.
() Parentheses Groups values and forces them to be calculated first.

Also, surrounds the set of parameters or inputs
required by a reserved word.

The Basic EasyLanguage Elements

Referencing Price Data 11

Symbol Name Description

: Comma Separates each parameter or input in a set required by
a reserved word. Also, separates a list of declared
inputs or variables.

Colon Used in declaration statements to begin the list of
inputs or variables. Also, used with Print statements
to format numeric expressions.

" Quotation Defines a text string.
Marks
[Square (Hard) | Used as a modifier, to reference a value from a

Brackets previous bar. Also, specifies elements in an array
variable.

{} Curly Brackets | Surrounds text that is to be ignored by EasylL anguage.
Enables you to include comments.

You will find examples of the usage of these punctuation marks throughout this book.

Referencing Price Data

The main objective of any trading or technical analysis tool is to evaluate price data. There-
fore, EasyLanguage provides a set of reserved words to refer to the price data available for

each bar.

These reserved words match the common verbiage used in everyday trading (e.g., Open,
High, Low, Close, Volume). The following table lists the reserved words used to refer to
the prices and other bar data, along with the abbreviations you can use in place of the words:

Reserved Word | Abbreviation | Description

Close C Last traded price of a bar

Date D Date of the close of a bar

Time T Time of the close of a bar

Open O First traded price of a bar

High H Highest traded price of a bar

Low L Lowest traded price of a bar

Volume \Y Number of shares or contracts traded in a bar

Openint Ol Number of outstanding contracts at the close of a
bar (available with futures only)

Ticks - Total number of trades in a bar

12

Expressions and Operators CHAPTER 2

Reserved Word | Abbreviation | Description

UpTicks -- Number of trades in which price was higher than
the previous trade, or unchanged tick after an uptick

DownTicks -- Number of trades in which price was lower than the
previous trade, or unchanged tick after a downtick

You can use any or all of these reserved words in your trading signals, analysis techniques,
and functions to refer to information regarding the current bar being evaluated. Remember
that trading signals, analysis techniques and functions are evaluated for every bar, from old-
est to most current, and results are obtained for every bar.

Also, since trading decisions are rarely made on just one bar’s worth of price information,
EasylLanguage makes it easy to obtain price data from any bar older than the current bar by
adding a modifier after the appropriate reserved word. For a detailed description of the
modifier to add, refer to the section titled, “Referencing Previous Values” on page 17.

Skip Words

There is a subset of reserved words called skip words. Skip words are optional words
that can be included in any statement with the intent of making the statement easier to
read. Skip words have no meaning and are in fact ‘skipped’ by EasyLanguage when
evaluating the trading signal, analysis technique, or function. Following is a list of the
EasylLanguage skip words.

a an at based by does from

is of on place than the was

For examples using these skip words, please refer to Appendix C, “Reserved Words
Quick Reference.”

Expressions and Operators

An expression is any combination of reserved words and operators that represent a value.
The value can be of three different types:

= numeric
m true/false (also called logical or boolean)
= textstring

As you work with EasyLanguage, you will use all three types of expressions extensively to
create your procedures.

Numeric expressions can be literal; in other words, a number. Or, they can be a reserved
word that represents a numeric value; for example, Close. The following are all examples
of numeric expressions.

The Basic EasyLanguage Elements Expressions and Operators 13

15
Vol une
(High + Low) / 2

True/false expressions can be either the value True or False, or an expression that evaluates
to True or False. True/false expressions invariably involve a comparison. The following is
a true/false expression; it evaluates to a value of True or False:

Cl ose > Open

A text string expression is any characters within quotation marks. The following is an ex-
ample of a text string expression:

“This is sone text”

Operators

EasylL anguage provides a variety of operators that enable you to manipulate reserved words
and values to create more complex numeric, true/false, and/or text string expressions. The
four different types of operators available in EasyLanguage are string, mathematical, rela-
tional, and logical. Each is described next.

String Operator

There is only one operator available to manipulate text string expressions, and its purpose
is to concatenate two text string expressions. The symbol used is the plus sign (+), and it
is used as follows:

“This is expression 1 " + “and this is expression 2"

The result will be one text string expression with the value of “This is expression 1 and this
is expression 2”.

Mathematical Operators
These operators are used to perform mathematical operations. The five mathematical
operators are:

Math Operator Meaning
+ Addition
- Subtraction

* Multiplication
/ Division
() Parentheses

These operators are always evaluated in a specific order. Division and multiplication are
evaluated first, and addition and subtraction are evaluated second. If there is more than one

14 Expressions and Operators CHAPTER 2

division and/or multiplication (or addition and/or subtraction) these are resolved from left
to right.

For example, the numeric expression:
Hgh + 2 * Range / 2

..will multiply the range of the bar by two first, then divide that value by two. It will then
add the result to the high. In an effort to find the midpoint of a bar, you might try to write
the following numeric expression:

H gh + Low/ 2

...but this will divide the low by two first, and then add the result to the high, giving a com-
pletely different result than what you intended.

In order to perform the calculation as expected and calculate the midpoint of the bar, you
need to use parentheses. Using parentheses allows you to control the order in which the cal-
culations are performed. Anything inside parentheses is evaluated first, before all the oper-
ators and expressions outside of the parentheses. Therefore, to obtain the midpoint of the
bar, you can write:

(High + Low) / 2
This will result in the high and the low being added and then divided by two.

Advanced Tip: “Division by Zero”

Whenever EasyLanguage finds a division sign, it performs an internal check to
ensure that the trading signal, analysis technique, or function is not attempting a
division by zero.

In order to improve your trading signals, analysis techniques, and functions for
speed, whenever dividing by a fixed number (a literal), use multiplication instead of
division. This allows EasyLanguage to skip the division by zero check.

For example, when finding the midpoint of the bar, you can write:
(Hgh + Low) / 2

Given that we know dividing by two forces EasyLanguage to check for division by
zero, we can use the following expression to improve the speed of the same
calculation:

(Hgh + Low * 0.5

Relational Operators

Relational operators enable the following standard comparisons: greater than, less than,
equal to, greater than or equal to, less than or equal to, and not equal to. EasylL anguage
also provides two trading-specific operators, crosses over and crosses under, which enable
you to identify the bar on which two numeric expressions cross.

The Basic EasyLanguage Elements Expressions and Operators 15

The relational operators available in EasyLanguage are:

Relational Meaning

Operator

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal to

<> Not equal to

Crosses over Greater than on current bar but less than or equal to on the
previous bar; you can also use crosses above

crosses under Less than on current bar but greater than or equal to on the
previous bar; you can also use crosses below

Using these relational operators, you can compare two numeric or text string expressions.
For example, the following expression finds a bar that closed higher than the high of one
bar ago:

Cl ose > Hi gh of 1 bar ago

When comparing text string expressions, each character is substituted with its equivalent
ASCII value and the first character of both expressions is compared, then the second char-
acter of each expression is compared and so on, until all characters of both expressions have
been evaluated.

Consider the following expression:
“ adeH < “ ZyXW!

The first character of the first text string expression is compared to the first character
of the second expression. The letter “a” has a smaller ASCII value than “z” so this
expression returns a value of True.

Logical Operators
Logical operators are used to combine two true/false expressions. There are two logical op-
erators:

s AND
= OR

16

Expressions and Operators CHAPTER 2

AND is used when both true/false expressions must be true; OR is used when either one or
both of the two expressions must be true. Following is a table that shows the possible re-
sulting values of ANDs and ORs:

Expression 1 Expression 2 Expression 1 AND Expression 2
True True True

True False False

False True False

False False False

Expression 1 Expression 2 Expression 1 OR Expression 2
True True True

True False True

False True True

False False False

As seen in the tables, the use of OR increases the likelihood of the overall expression being
true as only one of the two expressions needs be true in order for the overall expression to
be true.

More complex true/false expressions can be written using logical operators. For example,
in order to find a key reversal bar, you can use the following expression:

Low < Low of 1 bar ago AND Close > High of 1 bar ago

Given that we are using AND, this expression is true only when both conditional expres-
sions are true, these are: the current bar’s low is lower than the low of the previous bar,
AND the close of the current bar is greater than the high of one bar ago.

As another example, you can use the following expressions to look for stocks that have ei-
ther a price equal to or greater than $50 a share or a volume greater than two million shares:

Cl ose >= 50 OR Vol une > 2000000

Given that we used OR, the above expression will be true when either the closing price is
greater than 50 OR the volume is greater than two million shares. It will only be false if the
closing price is under 50 and the volume is under two million shares.

When you use multiple ORs and ANDs in a expression, EasylL anguage will evaluate them
in the order they appear, from left to right. If necessary, use parentheses to group expres-
sions and alter the order in which EasyLanguage evaluates the expressions.

For example, assume you write an indicator and want to find either a key reversal with vol-
ume greater than the previous bar’s volume, or an outside bar. You can accomplish this by
writing one expression using ANDs, ORs, and parentheses.

The portion highlighted in gray finds the key reversal with volume greater than the previous
bar’s, and the boxed portion finds the outside bar. Notice the placement of parentheses:

The Basic EasyLanguage Elements Referencing Previous Values 17

(Low < Lowf 1] AND Cl ose > High[1] AND Vol une > Vol une[1])
OR[(H gh > Hgh[1] AND Low < Lowf1])]

Notice that instead of writing out “of one bar ago”, we used the shorthand [1]. See the
next section, “Referencing Previous Values,” for more information.

Advanced Tip: “Writing Conditional Expressions”

EasylLanguage is optimized for speed, and one optimization relates to evaluating
true/false expressions that include logical operators. When an expression is being
evaluated and it is determined that regardless of the remainder of the expression, the
first part of the expression is false (or true), the remainder of the expression is not
evaluated. For example, in the following expression:

5 < 4 AND C ose > Open

Because 5 < 4 is false, and we are using the AND operator, EasyLanguage will not
evaluate the second half of the expression because regardless of the result of this
second part, the entire expression will evaluate to False.

Similarly, if we have the expression:
5 >4 OR Cose > Open

The second half of the expression will not be evaluated because 5 > 4 is always true
and we are using the OR operator. Therefore, regardless of the result of the second
half of the operation, the expression will evaluate to True.

Therefore, to write your trading signals, analysis techniques, and functions as
efficiently as possible, place the most restricting criterion of your expression first.

Referencing Previous Values

You can reference the value of an expression for any previous bar by adding either of
the two qualifiers listed below after the expression:

of N bars ago
[N]

N is the number of bars ago to reference. For example, consider the following
EasyLanguage expression:

Low of 1 bar ago

This expression is referencing the low price of the previous bar. The reference is relative to
the current bar (bar currently being evaluated). For example, if your trading signal, analysis
technique, or function is being evaluated for the 12th bar of a chart, the following expres-
sion refers to the traded volume of the 9th bar, or 3 bars back from the current bar:

Vol une of 3 bars ago

18 Referencing Previous Values CHAPTER 2

The alternate method for referring to data from a previous bar is to enclose the number N
between square braces after a reserved word, input, or variable, where N is the number of
bars ago. For example, the following expression is referencing the opening price from 2
bars ago:

Open[2]

Keep in mind that when talking about trading signals, analysis techniques, or functions, we
are always referring to bars; all trading signals, analysis techniques, and functions are based
on bars and not on days, minutes, or ticks. This allows the trading signal, analysis tech-

nique, or function to analyze a daily, minute, or even tick chart without any modifications.

For example, a 10-bar average indicator will calculate a 10-day average if applied to a daily
chart, or a 10-minute average if applied to a 1-minute chart, or a 10-tick average if applied
to a 1-tick chart.

Maximum Number of Bars a Study will Reference, or MaxBarsBack

All trading signals, analysis techniques, and functions that refer to past data will need to
wait a certain number of bars before they can start performing calculations. This waiting
period can be adjusted for any analysis technique, and it is called Maximum number of bars
a study will reference, or MaxBarsBack.

This concept is best explained through an example. Let’s use the Momentum Indicator,
which plots the difference between any price of the current bar and the same price N bars
ago. Using 10 as the number of bars ago, if we scroll all the way to the beginning of the
chart, we will see that we cannot calculate this indicator until we have 10 bars of data on
the chart. The indicator will start showing results on the 10th bar. Again, this is because it
needs to refer to the price of the previous 10 bars, as shown in Figure 2-3.

The Basic EasyLanguage Elements Referencing Previous Values 19

iM TradeStation Chart - [MSFT) Microsoft Corp LAS T-Daily
|
09529/1999 C=81.124 -1.000 -1.09% O=914563 H=92.124
F48.000
The Mormentum Indicator
- waits 10 bars before : : : F44.000
plotting results
F40.000
F36.000
F32.000
MormgntumiClose 100 -1.50
T HHH | 1 2
i ||”| et ||||| ||||“”'||| |” ||| || II|| il ||||” | ||||| ||||||‘|||I “I' i |||||| || v || ||| I L 000
| | \ - ‘\
e T D 'ag 'F "t A "
KN i

Figure 2-3. Momentum indicator waiting 10 bars before returning a value

For grid applications, the MaxBarsBack setting is the number of bars the application loads
for each symbol to perform the calculation of the indicator and display the most current val-
ue. For example, assume you insert the Momentum Indicator in a RadarScreen window.
This indicator compares the current bar to the bar 10 bars ago. Therefore, the MaxBarsBack
setting for the indicator is 10, and 10 bars of data will be loaded for each symbol in the
RadarScreen window.

Refer to section in this chapter titled, “How EasylLanguage is Evaluated” on page 6 for in-
formation on how EasylL anguage performs its calculations.

Advanced Tips: “Understanding the Auto-Detect Loop”

When you apply a trading strategy or analysis technique to a price chart and use the
Auto-Detect MaxBarsBack setting, the application looks for the largest data offset
used by the trading strategy or analysis technique, and uses that number for the
MaxBarsBack setting. However, if the trading strategy or analysis technique uses a
variable offset (e.g., Close[Valuel]), then it is possible that the value initially chosen
by the application will not be sufficient to apply the trading strategy or analysis
technique to all the data in the chart.

20 Manipulating Dates and Times CHAPTER 2

For example, an indicator is applied to a chart, and the application initially
determines that the maximum offset is 5. However, as the application evaluates the
indicator on the chart, it determines that the analysis technique actually requires 25
bars to perform its calculation, so the application removes the analysis technique
from the chart, and applies it a second time with 25 as the MaxBarsBack setting. This
process is repeated until the indicator is evaluated for the entire chart without
having to be removed.

This can cause Print statements and other debugging tools, as well as DLL calls to
be executed repeatedly for the first few bars in the chart when the trading strategy
or analysis technique is first applied to the chart. If this behavior is not desired, you
will need to change the MaxBarsBack setting to User-defined.

For information on how the Auto-Detect and User-defined formatting settings work,
see the Online User Manual.

Manipulating Dates and Times

You’ll be using dates and times often when writing your trading signals, analysis
techniques, and functions. This section covers how to work with dates and times.

Working with Dates

Dates in EasyLanguage are represented as a numeric expression in the form YYYMMDD
where YYY are years since 1900, MM is a 2-digit month, and DD corresponds to the day
of the month. For example, the EasyLanguage date corresponding to December 17, 1999 is
991217, whereas January 13, 2000 is written as 1000113.

One of the advantages of representing dates as numeric expressions is that it allows the
comparison of dates. For example, 1000113 is greater (i.e., it is a later date) than 991217,
and the following comparison evaluates to True: 1000113 > 991217.

A second way of representing dates in EasyLanguage is Julian Dates. The Julian Date sys-
tem assigns a date a number n, and the next calendar day has the Julian date n+1 (all cal-
endar days, not just trading days). The Julian Date system begins on January 1, 1900, which
is assigned the number 2. January 2, 1900 becomes the number 3, December 31, 1999 is
36,525, and January 1, 2000 is 36,526, etc.

This allows us to perform mathematical calculations with dates—such as addition and sub-
traction—without having to worry about ‘rolling over’ months and years. For example, if
we have the EasylLanguage date 991013 (13 of October of 1999) and we want to find the

date of 20 days ago, we could (incorrectly) try to subtract 20 from the date:

991013 - 20

However, we would end up with 990993, which is not a valid EasyLanguage date. Instead,
we can subtract 20 from the Julian equivalent of the date:

36,446 - 20

The Basic EasyLanguage Elements Manipulating Dates and Times 21

This results in 36,426, which is correct because it is the Julian Date that corresponds to Sep-
tember 23, 1999.

We strongly recommend you use the reserved words Date or ELDate whenever referring
to a date. This will ensure compatibility regardless of any future changes in date format.
The reserved words that will allow you to reference and manipulate dates are listed next.

Date

This reserved word returns a numeric expression representing the Easyl anguage date of the
closing price of the bar being analyzed. The date is an EasyLanguage date, so it is a numeric
expression of the form YYYMMDD, where YYY is years since 1900, MM is the month,
and DD is the day of the month.

Syntax:
Dat e

Parameters:
None.

Example:
See the example for the reserved word ELDate.

ELDate(YYYY, MM, DD)

This reserved word returns a numeric expression representing the EasylLanguage date
(YYYMMDD) equivalent to the standard date specified (YYYY, MM, DD).

Syntax:
ELDat e(YYYY, MM DD)

Parameters:

YYYY is the 4-digit numeric expression representing the year, MM is the 2-digit
expression representing the month, and DD is the 2-digit numeric expression
representing the day of the month.

Notes:
We highly recommend you use the reserved words Date or ELDate whenever referring to
a date. This will ensure compatibility regardless of any future changes in date format.

Example:
To verify that the date of the current bar is December 17, 1999, you can use the following
IF-THEN statement:

|f Date = ELDate(1999, 12, 17) Then
{ EasylLanguage instruction } ;

22 Manipulating Dates and Times CHAPTER 2

DateToJulian(eDate)

This reserved word returns a numeric expression representing the Julian Date equivalent to
the specified EasyLanguage date.

Syntax:
Dat eToJdul i an(eDat e)

Parameters:
eDate is the EasylLanguage date (YYYMMDD format) to be converted into a Julian Date.

Example:
You can use the following statement to obtain the Julian Date equivalent to the
EasylLanguage date of the current bar and assign it to a variable (in this case Valuel):

Val uel = DateToJdulian(Date);

JulianToDate(jDate)

This reserved word returns a numeric expression representing the EasyLanguage date
equivalent to the specified Julian Date.

Syntax:
Jul i anToDat e(j Dat e)

_Param_eters:
jDate is a numeric expression representing the Julian Date to convert into an EasyLanguage
date (YYYMMDD format).

Example:
The following statement obtains the Julian Date of the day 20 calendar days ahead of the
date of the current bar, and converts the result into an EasyLanguage date:

Val uel = JulianToDat e(Dat eToJdul i an(Date) + 20);

The expression inside parentheses (the reserved word DateToJulian) is evaluated first.
It converts the date of the current bar to a Julian Date. Then, the number 20 is added to
the resulting Julian Date. This Julian Date is then the parameter for the reserved word
JulianToDate, which converts the Julian Date to an EasyLanguage date, in the format
YYYMMDD. This EasyLanguage date is stored in the variable Valuel.

CurrentDate

This reserved word returns a numeric value representing the EasylLanguage date (YYYM-
MDD format) corresponding to the date and time of your computer (or datafeed, if you are
connected to a datafeed).

Syntax:
Current Dat e

Parameters:
None.

The Basic EasyLanguage Elements Manipulating Dates and Times 23

Example:
To have a trading signal, analysis technique, or function perform its calculations only be-
fore January 1, 2000 (or any other date for that matter), you can write:

If CurrentDate < ELDate(2000, 01, 01) Then Begin
{ EasylLanguage instruction(s) }
End;

Working with Times

In EasyLanguage, times are expressed as numeric expressions in the form HHMM, where
HH is the hour and MM is the minutes. The hours are managed in what is commonly called
24-hour or military format, so 1:30pm is represented as 1330 and 10:05am is represented
as 1005.

In addition, when you work with time, to facilitate mathematical operations such as addi-
tion and subtraction, you can refer to the time as minutes past from midnight. For instance,
1:00am is 60 (60 minutes after midnight), and 10:30am is 630 (630 minutes after midnight).

For example, if the current time is 10:30am (or 1030), and you want to add 60 minutes to
the current time, you may think that you simply add 60 to 1030:

1030 + 60
However, doing so results in a total of 1090, which is not a valid time. Therefore, to add 60
minutes to a time, use minutes after midnight. You would write:

630 + 60
Doing so results in 690. When you convert this number back into time in 24-hour format,

the result is 1130, which is the desired value. Reserved words are provided for you to con-
vert times back and forth automatically.

The reserved words used to reference and manipulate times are listed next.

Time

This reserved word returns a numeric expression representing the EasylLanguage time
(HHMM format) of the closing price of the current bar.

Syntax:

Ti me

Parameters:

None.

Example:
For example, you can write your trading signal, analysis technique, or function such that
it only evaluates the EasyLanguage instructions when the trade time is less than 11:00am:

If Time < 1100 Then
{ EasylLanguage instruction } ;

24

Manipulating Dates and Times CHAPTER 2

TimeToMinutes(eTime)

This reserved word returns a numeric value representing the number of minutes elapsed
since midnight for the EasyLanguage time (HHMM format) specified.

Syntax:
Ti meToM nut es(eTi ne)

Parameters:
eTime is a numeric expression representing the EasyLanguage time to be converted into
minutes past midnight.

Example:
The following statement converts the current bar’s time into minutes past midnight, and as-
signs the numeric value to a variable (in this case, Valuel):

Val uel = Ti neToM nut es(Ti ne);
MinutesToTime(mTime)

This reserved word returns a numeric expression representing the EasyLanguage time
(HHMM format) equivalent to a specific number of minutes from midnight.

Syntax:
M nut esToTi ne(nili me)

Parameters:
mTime is a numeric expression representing the minutes past midnight to be converted into
the equivalent EasyLanguage time.

Example:
The following statement converts the current time into minutes past midnight, adds 20 to

it, and then converts the resulting number back into an EasyLanguage time:
Val uel = M nutesToTi me(Ti meToM nutes(Tine) + 20);

The expression within parentheses is evaluated first (the reserved word
TimeToMinutes). It converts the time of the current bar to minutes past midnight. Then,
20 is added to the minutes past midnight, and the resulting number is used as the
parameter for the reserved word MinutesToTime, which converts the number back into
an EasylLanguage time (HHMM format).

CurrentTime

This reserved word returns a numeric value representing the EasyLanguage time (HHMM
format) corresponding to the time of your computer (or datafeed, if you are connected to a
datafeed).

Syntax:
Current Ti ne

The Basic EasyLanguage Elements Using Variables 25

Parameters:
None.

Example:
To have a trading signal, analysis technique, or function perform its calculations only if
it is before 2:00pm, you can write:

If CurrentTine < 1400 Then Begin
{ EasylLanguage instruction(s) }
End;

Using Variables

Variables are placeholders that hold a value; once you assign a value to the variable, you
can reference the value throughout the trading signal, analysis technique, or function by us-
ing the name of the variable. You can also recalculate the value of the variable within the
procedure.

The definition of variable by Webster is a symbol that may have an infinite number of val-
ues; that which is subject to change. Like the definition states, the value stored by the vari-
ables can change any number of times throughout the procedure, even from bar to bar.

The main use of a variable is to store the result of a calculation or comparison in order to
refer to the result of this operation later without having to repeat the formula or expression.

For example, in variable X you can store the value of the high price of the bar plus 33% of
the average true range. Once this value is calculated and assigned to the variable, there is
no need to type the formula again; you can use X instead to refer to this value.

Variables help with the speed and efficiency of the procedure. This is because the applica-
tion does not have to reference repeatedly the values that compose the statement (e.qg., pric-
es and other values), or perform the math or comparisons that are required by the
expression. Therefore, using variables in place of frequently-used expressions speeds up
the procedure and uses less memory.

Another very important fact about variables is that the value of a variable at the end of a bar
is used as the initial value of the variable for the next bar. In other words, the values of all
variables are carried over from bar to bar, thus allowing an easier manipulation of informa-
tion. For instance, you can use a variable to keep a counter of the number of bars that have
passed since a certain market condition, or the number of bars that you’ve been in a certain
market position.

For example, the following instructions keep a counter of the number of bars since the last
key reversal:

Vari abl e: Counter(-1);
If Counter <> -1 Then
Counter = Counter + 1 ;

If Low < Low 1] AND O ose > High[1] Then
Counter =0 ;

26

Using Variables

CHAPTER 2

The variable Counter starts with a value of -1 (which is assigned in the Variable Declara-
tion statement), and is incremented by one on every bar once its value changes from
-1.

This indicator changes the Counter variable from -1 to 0 the first time a key reversal is
found, and subsequently resets it to O each time a new key reversal is found. Note how the
instructions Counter = Counter + 1 assigns to the variable Counter its current value and
adds one. This would not be possible unless variables carried forward their values from bar
to bar.

Also, using variables helps avoid typing errors and makes your procedure more legible. For
example, consider the following statement:
If Close > H gh[1] + Average(Range, 10) * 0.5 Then
Buy Next Bar at [High[1] + Average(Range,10) * 0.5 Stop;

The expression highlighted in the gray boxes can be assigned to a variable. By using a vari-
able (in this example the variable is Valuel), we can simplify the statement to the follow-

ing:
Valuel = High[1l] + Average(Range,10) * 0.5 ;
If Close > Valuel Then
Buy Next Bar at Val uel Stop;

This second example is much easier to read because of the use of a variable. If you are going
to use an expression throughout a procedure, you should assign it to a variable.

Note: If you use an expression very frequently and in more than one trading signal or
analysis technique, you may want to create a function. Variables can only be used in
the procedure where they are declared and are not shared between trading signals and
analysis techniques, whereas functions can be referenced by other trading signals and
analysis techniques, and even other functions. The section later in this chapter, titled,
“Understanding User Functions” on page 50 covers functions in detail.

When working with variables, you declare them, assign values to them, and reference their
values. How to do each is discussed next.

Declaring Variables

Before you can use a name as a variable, you must ‘tell’ EasylL anguage that the name
is to be used as a variable; this is known as declaring the variable(s). To declare a
variable, you use a Variable Declaration statement. When you declare a variable, you
also specify its type and initial value.

Syntax:
Vari abl e: Name(Val ue) ;

The Basic EasyLanguage Elements Using Variables 27

Name is the name of the variable. The name must start with a letter, and can be a maximum
of 20 characters in length. The name can contain letters, numbers, dashes, or periods. Value
is any numeric, true/false, or text string value; it is the initial value for the variable.

You can declare one or more variables using the same statement by separating the variables
with commas. For example, the following statement declares three variables, each of a dif-
ferent type:

Vari abl es: Nunber (0), Condition(False), TextStr(“Text”);

There is no limit to the number of variables that you can declare with one statement, al-
though if you prefer, you can use multiple variable declaration statements. There is no limit
to the number of Variable Declaration statements you can use, either.

Also, the reserved words Var, Vars, and Variables are synonyms to Variable and can be
used interchangeably. For example, you could re-write the statement above as:

Vars: Nunber(0), Condition(False) ;
Var: TextStr(“Text”);

The values in parentheses serves two purposes. First, it indicates the type of variable it is:
numeric, true/false, or text string. If you use a numeric expression, the variable is a numeric
variable; if you use a true/false expression, then it is a true/false variable; and likewise, if
you use a text string expression, the variable is a text string variable.

Second, the value in parentheses assigns the initial value to the variable. As explained ear-
lier in this book, all the instructions in EasyLanguage are read from top to bottom, and they
are interpreted for every bar on the chart from left to right. The variable takes the value in
parentheses as its initial value.

Note: For your convenience, EasyLanguage provides a number of pre-declared
numeric and true/false variables. You can use these variables in your trading signals,
analysis techniques, and functions without declaring them or setting their initial value.
The numeric variables available for you to use are Value0 through Value99, and their
initial value is zero (0). You’ll notice that in most of our examples, we use Valuel. The
true/false variables available for you to use are Condition0 through Condition99, and
their initial value is False. There are no pre-declared text string variables. The only
advantage to using pre-declared variables is that you don’t need to declare them. The
disadvantages are that the name(s) will be less intuitive and you cannot set their initial
values yourself.

Assigning Values to Variables

Once you have declared your variable(s) (or if you are using pre-declared variable(s)), you
can assign values to them throughout the trading signal, analysis technique, or function.

Syntax:]
Name = Expression ;

28

Using Variables

CHAPTER 2

Name is the name of the variable and Expression is either a numeric, true/false, or text
string expression. The expression type must match the variable type. If the statement is as-
signing a value to a numeric variable, the expression must be a numeric expression.

For example, the following statement assigns the average true range of the last 10 bars to
the variable Valuel:

Val uel = Average(TrueRange, 10);

The following statements declare a true/false variable called KeyReversal, and then assign
the result of a comparison to the variable:

Vari abl e: KeyReversal (Fal se);

KeyReversal = Low < Low 1] AND C ose > High[1];

Referencing the Value of a Variable

Once you have declared a variable, and a value has been assigned to it, you can reference
its value by using the name of the variable in place of the expression. For example, the fol-
lowing statements calculate an entry price, assign it to a numeric variable called EntryPrc,
and then reference the value of the variable in the buy order:

Variable: EntryPrc(0);
EntryPrc = Hi ghest (Hi gh, 10);

I f MarketPosition <> 1 Then
Buy Next Bar at EntryPrc Stop;
In the following example, the statements calculate the highest high of the last 10 bars, com-
pare it to the current high, and assign the result to a true/false variable called Condition1.

We then use an IF-THEN statement to determine if Conditionl is true, and if it is, then an
alert is triggered:

Conditionl = H gh > Hi ghest(H gh, 10)[1];

I f Conditionl Then
Al ert (“New 10- bar high”);
Notice that we do not have to use the comparison Condition1 = True; it is assumed. If, how-

ever, you want to find when the expression is false, then you must state the comparison, as
follows:

Conditionl = H gh < Highest(Hi gh, 10)[1] AND Low >
Lowest (Low, 10) [1] ;

If Conditionl = Fal se Then
Al ert (“New high or |ow);

The Basic EasyLanguage Elements Using Variables 29

Normally, you would write the expression such that you want it to evaluate to true; howev-
er, it is up to you which way you want to write the expressions and statements.

Itis also possible to refer to the value of a variable on a previous bar; to do so, include the
square brackets and number after the name of the variable. For example, the following
statements refer to the value of a variable called EntryPrc five bars ago:

Variable: EntryPrc(0);
EntryPrc = Hi ghest (Hi gh, 10);

If EntryPrc >EntryPrc[5] Then
Buy Next Bar at Entryprc Stop;

Advanced Tip: “Working with Series Variables”

EasyLanguage will automatically determine if a previous value of a variable is
accessed at any point in the trading signal, analysis technique, or function, and will
store the historical values of the variable only if required (and then only as much
history as specified by the MaxBarsBack setting). For example, consider the
following indicator:

Val uel = Close * 1.05;

Val ue2 = Close - Close[10];
Val ue3 Val uel[5] + Val uez;
Pl ot 1(Val ue3);

A historical value of Valuel is referenced in the third line (the value of five bars
ago); also, the MaxBarsBack setting for the indicator is 10 (since the close of 10 bars
ago is referenced and that is the most history required). Therefore, the indicator will
store the values for Valuel for the last 10 bars. The variables Value2 and Value3 do
not require that history be saved (they are simple), thus historical values of these
variables are not stored.

Variables can be either series or simple. When they are series, history is stored for
them; when they are simple, history is not stored for them. This becomes important
when accessing the values of variables from third-party languages through DLLs,
because there may or may not be historical data stored for the variable, or not as
much as desired by the third-party developer. In this scenario, you can force a
variable to be a series variable by referencing a previous value of the variable in the
trading signal, analysis technique, or function (i.e., by using a ‘dummy’ statement).
Or, you may want to consider working with functions; you can force a function to be
a series function. See the section later in this chapter titled, “Understanding User
Functions” on page 50..

30 Using Inputs CHAPTER 2

Using Inputs

Inputs are placeholders that hold a value; you can define the value of the input once at the
beginning of the procedure and then reference the value throughout the trading signal or
analysis technique by using the name of the input.

The value of an input cannot be changed within the EasylL anguage procedure; its value re-
mains constant throughout the procedure. The advantage of using an input is that you can
redefine the value of the input when you use the trading strategy or analysis technique.

For example, the Moving Average 1 Line Indicator is written with an input called Length,
which is the number of bars to include in the average. This input is assigned the default val-
ue of 9, but you can change it to any number when you apply the indicator to a chart or
grid, thereby having the trading signal, analysis technique, or function calculate the moving
average using a different number of bars.

Inputs allow for maximum flexibility and user-control of the trading strategy or analysis
technique without having to go to the EasyLanguage PowerEditor or TradeStation
StrategyBuilder to modify the instructions themselves. Also, you can use the same
EasylLanguage procedure more than once in a chart window or grid application (or in dif-
ferent chart windows or grid applications), using different input values in each.

For example, you can apply the Moving Average 1 Line Indicator to a Microsoft chart to
calculate a 10-bar average, and you can apply the same indicator to an IBM chart to calcu-
late an 18-bar average. Inputs allow the same indicator to perform these different calcula-
tions; you don’t have to create a new indicator or even modify it in the EasyLanguage
PowerEditor.

Another important advantage is that when you use inputs in your trading signals, you can
then use TradeStation’s optimization feature to fine tune your trading strategy(ies). For in-
formation on optimizing your trading strategies, search the Online User Manual Answer
Wizard for Understanding Optimization.

Input Types

Inputs can be one of three types: numeric, true/false, or text string. Numeric inputs repre-
sent numeric values, true/false inputs represent expressions that evaluate to True or False,
and text string expressions hold text strings.

Inputs can be literal expressions such as a specific number or a text string, or they can be
expressions whose values will change from bar to bar; for example, an input can be set to
the close of the bar, in which case, the value will change with each bar. Or, it can be set to
the range of the bar, using the function Range. The value of an input cannot change within
a bar.

To use inputs, you first have to declare them; once you declare them, you can reference
them in your trading signal or analysis technique. There is no Assignment statement for in-
puts (since their value cannot be changed within the procedure).

The Basic EasyLanguage Elements Using Inputs 31

Declaring Inputs

Before using any name as an input, it is necessary to tell EasyLanguage that this name will
be used as an input, or to declare the inputs you will be using. To do so, you use an Input
Declaration statement.

Syntax:
I nput: Nane(val ue);

Name is the name of the input. The name has to start with a letter, and it can be a maximum
of 20 characters in length. The name can contain letters, numbers, dashes, or periods. Value
is any numeric, true/false, or text string value that will be used as the default value for the
input.

You can declare more than one input using the same statement by separating the inputs with
commas. For example, the following Input Declaration statement declares three different
inputs:

I nputs: MyNumber (0), MyCondition(Fal se), MyText(“Text”);

There is no limit to the number of inputs that you can declare with one statement; however,
you can also use as many Input Declaration statements as you want in your procedure.

Note: The reserved word Inputs is a synonym to Input; they can be used
interchangeably.

The value provided in parentheses serves two purposes: first, it defines the type of the input.
If a numeric expression is used, it is a numeric input; if a true/false expression is used, it is
a true/false input; and, if a text string expression is used, the input is a text string input.

Second, it assigns the default value to the input. The value specified for each input can be
altered when you apply or format the trading strategy or analysis technique, but this is the
value for the input each time it is applied.

Referencing the Value of an Input

Once you have declared an input, you can reference its value simply by using the name of
the input in place of a numeric, true/false, or text string expression. For example, the fol-
lowing statements calculate an entry price using an input as the multiplying factor:

[nput: Milt(1.3);
Variable: EntryPrc(0);
EntryPrc = H ghest (Hi gh,10) * Mt ;

I f MarketPosition <> 1 Then
Buy Next Bar at EntryPrc Stop;
First, we declare the input. Then, we declare a variable, to which we assign the highest high

price of the last 10 bars, multiplied by the input (whose value is set to 1.3). Once we have
calculated the entry price (EntryPrc), we place an order. If we are not currently in a long

32

Using Inputs

CHAPTER 2

position, we place a stop order to buy on the next bar at the entry price we’ve calculated or
higher. Notice that we reference the value of the input simply by using the input in place of
a value.

In EasyLanguage, you use true/false expressions in IF-THEN statements and in While
loops (these are described in the section titled “EasyLanguage Control Structures” on
page 33). These statements perform their actions when the true/false expression evaluates
to True. The following instructions show an example of referencing the value of a true/false
input:

I nput: Drawli ne(Fal se);
Pl ot 1(Monent un{ Cl ose, 10), “Monentuni);

If DrawlLi ne Then
Pl ot 2(0, “Zero”);

This indicator plots a momentum line using the closing price of the last 10 bars. In addition,
it allows for the plotting of a zero line, which by default, will not be drawn (the input Draw-
Line is set to False by default). If, however, you change the DrawLine input to True as you
apply the indicator or when you format it, then the zero line will be drawn on the chart.

It is also possible to refer to the value of an input on a previous bar; to do so, include the
square brackets and number after the name of the input. For example, the following state-
ments calculate and plot a momentum value:

I nputs: Price(d ose), Length(5)

Valuel = Price - Price[Length]
Pl ot 1(Val uel, "Mnmentun);

We use an input to refer to the price we want to use to calculate the momentum as well
as the number of bars to use. In this case, the value of the input 5 bars ago may be
different because the input is a price, which varies from bar to bar. If the value of the
input does not vary, referencing a previous value is not necessary.

Advanced Tip: “Assigning Series Values to Inputs”

Inputs are evaluated every instance they are referenced in the body of a trading sig-
nal or analysis technique; this is similar to simple functions. However, series func-
tions are NOT calculated each instance. For example, if you use the AverageFC
function (a series function) four times in your procedure, it is evaluated once and
then the resulting value is referenced during the procedure.

However, there may be instances where you want to use a series function but want it
to be recalculated every instance; to force it to recalculate, you can assign the series
function to an input. The function will be called (i.e., recalculated) every instance
that the input is used.

The Basic EasyLanguage Elements EasyLanguage Control Structures 33

To illustrate how inputs are calculated, we wrote a simple indicator using the
function Random. When we write the indicator without inputs, both print statements
return different values (Random is a simple function):

Print (Randonm(1));
Print (Random(1)) ;

When we write this indicator using an input, to which we assign the value
Random(1), and then print the value of the input twice, the result is the same as using
the function twice. Since the input is recalculated each time it is used, each print
statement returns a different result:

I nput : Val (Randon(1));
Print(Val);
Print(Val);

EasyLanguage Control Structures

EasyLanguage has three types of statements that control the actions that are performed un-
der different circumstances. These statements enable you to perform actions: only when
certain conditions are true, for a period during which certain conditions are true, or for a
fixed number of iterations.

In EasyLanguage, the three main control structures are:
s |IF-THEN statement
= While loop
= Forloop

Each is described next.

IF-THEN Statement
The IF-THEN statement allows you to specify operations that will be performed only
when a certain condition is true.

Syntax:
If Conditionl Then

{ EasylLanguage instruction };

Conditionl is any true/false expression, and {EasyLanguage instruction} is any
EasyLanguage statement.

For example, you can keep a count of how many times a gap up has occurred in a chart
(the open is greater than the previous bar’s high) by having an IF-THEN statement add
1 to a variable each time a gap up is found:

34 EasylLanguage Control Structures CHAPTER 2

If Open > High[1l] Then
Val uel = Valuel + 1 ;

In this example, every time a bar gaps up, the variable Valuel is incremented by one.
As another example, you can place a buy order only when the fast moving average
crosses over the slow moving average:
If Average(d ose, 10) Crosses Over Average(d ose, 20) Then
Buy Next Bar at Market ;

IF-THEN statements are used extensively in EasyLanguage; for example, ShowMe
studies are written exclusively with IF-THEN statements. The objective of a ShowMe
study is to identify a certain scenario, and mark any bar on which this scenario occurs.
The following example shows a typical one-statement ShowMe study, which finds and
marks each outside bar in a price chart:

If High > High[1] AND Low < Low 1] Then

Pl ot 1(Hi gh, “Qutside Bar”) ;

If an outside bar is found, a mark is placed at the high price of the bar.

Keep in mind that only the first EasyLanguage statement after the reserved word then
isincluded in the IF-THEN statement. For example, take the following ShowMe study:
If High > H gh[1] AND Low < Low 1] Then
Pl ot 1(Hi gh, “Qutside Bar”);
Alert;
The Alert statement is not included as part of the IF-THEN statement, and is therefore

executed on every bar. You can, however, include more than one statement in the
IF-THEN statement. To do so, use a Block IF-THEN statement.

Block IF-THEN Statement
Block IF-THEN statements enable you to specify any number of statements to be
executed by the IF-THEN statement. You include the statements by using the reserved
words Begin and End around them. For example, to have the ShowMe study mark the
bar and trigger an alert each time a gap up bar is found, you can use a Block IF-THEN
statement:
If H gh > Hi gh[1] AND Low < Low 1] Then Begi n
Pl ot 1(Hi gh, “QutSide Bar”);
Alert;
End ;

All statements within the Begin-End block must end with a semicolon. You can include
as many statements as you want within the block.

The Basic EasyLanguage Elements EasyLanguage Control Structures 35

IF-THEN Else Statement

Also, you can structure an IF-THEN statement so that it performs a certain action if the
condition is met, and an alternate action if the condition is not met. You do this using
the IF-THEN Else statement. Consider the following statement:

If Close > Cose[1l] Then
Val uel = Val uel + Vol une
El se
Val uel = Val uel - Vol une;
In this example, Valuel will keep the summation of the volume of the days with a
positive net change minus the summation of the volume of the days with negative net

change. Notice that there is no semicolon used until the end of the last line; in effect,
the above example is one complete statement.

Combining Block IF-THEN and IF-THEN Else Statements

When you use an IF-THEN Else statement, you can also use a Block IF-THEN statement
for either the IF-THEN or the Else instructions (or both). The following three variations are
valid forms of these IF-THEN statements:

1. Block IF-THEN with Else

If Conditionl Then Begin
{ EasylLanguage instruction(s) } ;
End
El se
{ EasylLanguage instruction } ;
2. Block IF-THEN with Block Else

If Conditionl Then Begin
{ EasylLanguage instruction(s) } ;

End
El se Begin
{ EasylLanguage instruction(s) } ;

End;

3. IF-THEN with Block Else

If Conditionl Then
{ EasylLanguage instruction } ;
El se Begin
{ EasylLanguage instruction(s) } ;

End;

36 EasylLanguage Control Structures CHAPTER 2

Nesting an IF-THEN Statement

You can also nest IF-THEN statements. Nesting is a term used when one control structure
is included within another; therefore, a nested IF-THEN statement simply means that there
are one or more IF-THEN statements within another IF-THEN statement.

For example, a trading signal might state that it will either buy or sell when the market gaps
up. If the market closes greater than the open, the signal places an order to buy 100 shares;
if the market closes lower than the open, the signal sells short 100 shares.

This instruction is written best using nested IF-THEN statements, as follows:
If Open > High[1] Then Begin
If Close > Open Then
Buy 100 shares This Bar on C ose
El se
Sel | 100 shares This Bar on Cl ose ;
End ;

Notice that in order to nest an IF-THEN statement, we generally use the Begin-End
block, as highlighted by the gray boxes above.

While Loop

The While loop repeats the specified instructions as long as the control expression has a
value of True. When market conditions change and the control expression becomes False,
the loop is exited.

Note: When working with RadarScreen or OptionStation, where you are analyzing
multiple symbols simultaneously, keep in mind that using loops will add to the
processing time and the resources required, and the time and resources required is
multiplied by each symbol being analyzed.

Syntax:
Wil e Conditionl Begin

{ EasylLanguage instruction(s) } ;
End;
Conditionl is any true/false expression and is called the control expression. { EasyLan-
guage instruction(s) } is any number of valid EasyLanguage statements.

For example, the following While loop is used to count the number of bars generating a to-
tal volume of 1,000,000 shares:

The Basic EasyLanguage Elements EasyLanguage Control Structures 37

Vari abl es: SunmVol une(0), Counter(0) ;

SunVol une = 0 ;
Counter = 0 ;

Wi | e Sumvol ume < 1000000 Begin
SunVol une = SumVol unre + Vol une[Counter] ;
Counter = Counter + 1 ;

End ;

First, we declare two variables, SumVolume and Counter. Although we initialize the vari-
ables to zero (0) when we declare them, we also reset the variables to zero on each new bar.
This is so that once the total volume is reached, and the procedure moves to the next bar,
the values are reset and the loop starts over again.

The statements inside the While loop are repeated until the control expression
(SumVolume < 1000000) returns a value of False. In this particular example, the While loop
adds the volume of the historical bars, one at a time, starting with the current bar (Counter
= 0), and moving backward (Counter = 1, Counter = 2, and so on) until the summation is
greater than 1,000,000 shares.

Infinite L oops

When using a While loop, there is a possibility that the control expression may never eval-
uate to False, resulting in an infinite loop (i.e., one that never exits). To avoid this, when a
loop iterates for more than 5 seconds, your TradeStation Technologies product generates a
runtime error and the trading strategy or analysis technique is turned off.

Using the above example, if the summation of the volume does not reach 1,000,000, the
loop would continue indefinitely until it runs out of data. Therefore, it is always advisable
to provide a fail-safe way for the loop to exit.

Using the above example again, we can modify the control expression so it evaluates to
False after looking at 20 bars, thus forcing the loop out either when the volume reaches the
target number or when 20 bars have been evaluated:

Vari abl es: SumVol ume(0), Counter(0);

SunVol une = 0;
Counter = O;

VWhi |l e SumVol ume < 1000000 AND Counter < 20 Begin
SunVol une = SunmVol une + Vol une[Counter];
Counter = Counter + 1,

End;

38 EasylLanguage Control Structures CHAPTER 2

For Loop

A For loop enables you to repeat the instructions a specified number of times.

Note: When working with RadarScreen or OptionStation, where you are analyzing
multiple symbols simultaneously, keep in mind that using loops will add to the
processing time and the resources required, and the time and resources required is
multiplied by each symbol being analyzed.

Syntax:
For Valuel = N To| Downto M Begi n

{ EasylLanguage instruction(s) } ;
End;

Valuel is any numeric variable, N and M are any humeric expressions, and
{ EasyLanguage instruction(s) } is one or more valid EasyLanguage statements.

The number of times the loop iterates through the instructions is determined by the Valuel
variable, which is called the control variable. Again, this can be any declared numeric vari-
able.

The value of the control variable is set to N the first time the statement is evaluated, and the
value is then incremented or decremented automatically on every iteration. If the word To
is used in the syntax, the variable is increased by one on every iteration. If the word Downto
is used, then the variable is decremented on every iteration.

Internally, the expression that is evaluated each time the loop is about to start executing the
statements is Valuel <= M, when the word To is used, and Valuel >= M, when Downto is
used. Therefore, if the For loop is incrementing the control variable and N is greater than
M, the instructions in the loop will not be evaluated. Likewise, if the loop is decreasing the
control variable and N is lower than M, the instructions are not evaluated.

For example, the following loop iterates through the instructions a total of 5 times:

For Valuel = 1 To 5 Begin

{ EasylLanguage instruction(s) } ;

End;
Valuel will start at 1 for the first iteration, then 2, 3, 4, and 5 and before the sixth iteration
will exit from the loop since Valuel will then be greater than 5.
For loops are usually used to look back a specific number of bars. For example, the follow-
ing loop is used to add the volume of the last 5 bars:

Vari abl e: SunWVol une(0);

For Valuel = 0 To 4 Begin
SunVol une = SunVol une + Vol une[Val uel]:;
End;

The Basic EasyLanguage Elements Writing Alerts 39

Notice that this loop also uses the control variable as the bar offset for the reserved word
Volume, as highlighted in gray. Also, since we want to consider the volume of the current
bar (Volume[0]), we use the values 0 to 4 for our loop, instead of 1 to 5 as we did in the
previous example. This is a common and effective practice.

You can terminate the loop early by modifying the value of the control variable. Using the
previous example, if you want to stop the summation once it reaches 500,000, you can use

the following instructions:
Vari abl e: SunVol une(0);

For Valuel = 0 To 4 Begin
SunVol une = SumVol une + Vol une[Val uel] ;
I f SumVol une > 500000 Then
Val uel = 5;
End;
For loops are used in many of the trading signals, analysis techniques, and functions built

into the TradeStation Technologies products. Among the most common are the user func-
tions (e.g., Average, Summation, Highest, Lowest, MRO).

Writing Alerts

Many of the analysis techniques built into TradeStation Technologies products provide
the option of enabling an audio/visual alert. When an alert is triggered, the alert is logged
in the Tracking Center window and a dialog box appears, as shown in Figure 2-4. A noti-
fication sound is also played at the same time.

‘2 Alert Notification

Attention
There are new alerts for CORL

Analyziz Technique: Moving Average

Workspace: Scanning, o

Additional Info

Moving dverage Crossover

Gota Tracking Eenterl Ga to Wwindow |

Figure 2-4. Alert Notification Dialog Box

The dialog box displays the name of the symbol, the name of the analysis technique, and

the workspace in which the alert was triggered. In addition, the dialog box has a field called
Additional Info that contains additional information provided by the analysis technique.

All this information is also logged in the Tracking Center.

40

Writing Alerts

CHAPTER 2

To include an alert in an analysis technique, you use alert statements. The description in-
cluded in the Additional Info field is written in the EasyLanguage alert statement included
in the procedure that triggered the alert.

You can include alert statements in:

Indicators

ShowMe studies
PaintBar studies
ActivityBar studies
ProbabilityMap studies

You can use any of the reserved words described in this section with indicators and studies.
When the EasylLanguage criteria is met on the last bar in the price chart or grid, an alert is
triggered.

It is very important to remember that alerts are only triggered if the criteria specified by the
alert statement(s) are met on the last bar of the price chart or grid. Historical instances of
alerts are not logged in the Tracking Center window, nor is the Alert Notification dialog
box displayed.

Alerts can be thought of as a switch that can be turned on or off throughout the
analysis technique by using different statements. Once all instructions are read, the final
state of this switch determines if the alert is triggered or not.

For example, say that the fourth line of an indicator triggers an alert; however, the very last
line of the indicator is a statement that disables the alert. In this case, the indicator will not
trigger an alert.

Alerts are not triggered at the moment they are read, but after all the EasylL anguage state-
ments have been analyzed for the last bar of the price chart or grid. This gives you the abil-
ity to enable and/or disable an alert based on changing market conditions.

Following are the alert-related reserved words you’ll be using to include alerts in your in-
dicators and/or studies.

Alert

This reserved word triggers an alert and enables you to provide a description of the condi-
tions that triggered the alert.

Syntax:
Al ert(“Description”) ;

Description is any user-defined text string. You use the text string to provide information
about the alert such as the market conditions that triggered it. This text string appears in the
Additional Info field of the Alert Notification dialog box (shown in Figure 2-4) and in
the Tracking Center. You do not have to provide a description, in which case the
Additional Info field in the Alert Notification dialog box and the description for the alert
entry in the Tracking Center are left blank.

The Basic EasyLanguage Elements Writing Alerts 41

If you include more than one Alert statement in your indicator or study, and more than one
alert is triggered, the description included with the last alert triggered is the description
shown. For example, assume the following indicator is applied to a price chart:

Pl ot 1(Aver age(Cl ose, 10), “Avg’);

If Close Crosses Over Plotl Then
Alert(“Price crossed over average”);

If Vol ume > Average(Vol une, 10) Then
Alert(“Volune Alert”);
If on the last bar of the price chart both conditions are true, both alerts are evaluated. In this

case, only one alert is actually triggered and logged, and it will have the last description,
which in the above example is the alert with the description “Volume Alert”.

Cancel
This reserved word is used to cancel an alert; it turns off any alerts triggered during the cur-
rent bar.

Syntax:
Cancel Alert

For example, if you write an indicator with two alert criteria, but you only want the alert to
be triggered after 11:00am, you can use the following statements:

If Close Crosses Over Average(C ose, 10) Then
Al ert (“Average Cross Over”);

If Volume > Average(Vol une, 10) Then
Al ert (“Vol une Spike”);

If Time <= 1100 Then
Cancel Alert;
If an alert is triggered by either one of the Alert statements, it is turned off by the

Cancel Alert statement unless it is after 11:00am. Once it is after 11:00am, the alert is
triggered when either Alert statement is true.

CheckAlert

This reserved word determines whether or not the current bar is the last bar on the price
chart (or grid) and whether or not the alert is enabled for the indicator or study.

When the alert is enabled and it is the last bar on the chart (or grid), this reserved word
returns a value of True. This reserved word will return a value of False for all other
bars on the price chart, and on the last bar of the price chart if the alert is not enabled.

42

Writing Alerts

CHAPTER 2

This allows you to optimize your indicators and studies for speed; you can have the
indicator or study skip all statements relating to the alert unless it is the last bar of the
price chart and the alert is enabled.

Syntax:
CheckAl ert

For example, the following statements can be used to trigger an alert when the volume
is twice the average volume, and to display the ratio between the current volume and
the average. Because CheckAlert is used, the calculations are ignored for all historical
bars as well as when the alert is not enabled.
| f CheckAl ert Then Begin
Val uel = Vol ume / Average(Vol une, 10);
If Volume >= 2 * Average(Vol une, 10) Then
Alert (“Volume is" + Valuel);

End ;

Note: Using CheckAlert in an IF-THEN statement to optimize your analysis technique
is effective; however, even when the statements that follow are ignored, the indicator
or study still takes into account the statements in order to determine the number of bars
necessary for the indicator or study to perform its calculations (MaxBarsBack), and
any series functions are calculated. Refer to the section ““Alert Compiler Directives”
for information on other reserved words you can use to have the statements ignored
completely.

AlertEnabled

This reserved word returns a value of True when the alert is enabled for the indicator
or study applied to a price chart or grid (and False when it is not). This allows you to
optimize the indicator or study for speed; the statements after this reserved word are
evaluated only when the alert is enabled.

The difference between this reserved word and the CheckAlert reserved word is that
AlertEnabled returns a value of True for all bars when the alert is enabled whereas
CheckAlert returns a value of True only for the last bar on the chart.

Syntax:
Al ert Enabl ed

For example, the following statements calculate a cumulative advance/decline line and
an alert is triggered when the cumulative advance/decline line hits a 50-bar high:

The Basic EasyLanguage Elements Writing Alerts 43

If Al ertEnabl ed Then Begin
If Close > Close[l] Then
Val uel Val uel + Vol une
El se
Val uel = Val uel - Vol une;

I f Valuel > Highest(Val uel, 50)[1] Then
Alert(“New A/D line high”);
End;

In this example, the advance/decline line will only be calculated if the alert is enabled, and
it will be calculated for all bars on the price chart or in the grid, not just the last bar.

Note: Although the statements that follow this reserved word are sometimes ignored,
the indicator or study still takes into account the statements when it determines the
number of bars necessary for the indicator or study to perform its calculations
(MaxBarsBack), also any series functions within the statements are calculated. See the
section “Alert Compiler Directives” for information on additional reserved words you
can use to have the statements ignored completely.

Using Alert Compiler Directives

These reserved words are complier directives that cause your indicator or study to
completely ignore the statements that follow the reserved word unless the alert is
enabled for the indicator or study. The indicator or study will not take into account the
statements following these words when it determines the number of bars necessary to
perform its calculations (MaxBarsBack), nor will any series functions within the
statements be calculated.

#BeginAlert

The statements between this compiler directive (#BeginAlert) and the reserved word
#End are evaluated only when the alert is enabled for the analysis technique. You must
use the reserved word #End with this reserved word.

Syntax:
#Begi nAl ert ;

{EasyLanguage instruction(s) } ;
#End ;

For example, an indicator that calculates the 10-bar momentum of the closing price
needs ten bars in order to start plotting results. However, if an alert is added to this
indicator and the alert uses a 50-bar average of the volume, then the bar requirement is
upped to fifty. However, the 50-bar average is only used for the alert calculations, so
there is no need to have the indicator wait fifty bars before returning results unless the
alert is enabled.

44

Writing Alerts

CHAPTER 2

Therefore, to have the indicator plot results after ten bars and ignore the 50-bar
requirement, use #BeginAlert in your indicator, as follows:

Plot1(Cl ose - Cose[10], “Mnentuni) ;

#Begi nAl ert ;
If Plotl Crosses Over 0 AND Vol ume > Average(V, 50)* 2 Then
Alert(“Mmentumis now positive”) ;
#End ;

The above indicator plots the momentum and triggers an alert if the momentum
becomes positive while experiencing volume that is greater than twice the 50-bar
average. When the indicator is applied without enabling the alert, it requires only ten
bars to start calculating. When the alert is enabled, the indicator is recalculated; the
statements within the compiler directives are evaluated and the new requirement is 50
bars.

#BeginCmtryOrAlert

When the commentary and alert statements are intertwined, and the commentary and
alert statements are not necessary for the normal plotting of the indicator or study, use
the reserved word #BeginCmtryOrAlert. The statements between this compiler
directive and the reserved word #End are evaluated only when either commentary is
generated or the alert is enabled. You must use the reserved word #End with this
reserved word.

Syntax:
#Begi nCmtryOrAlert ;

{EBasyLanguage instruction(s) }
#End ;

’

For example, the following indicator plots the 10-bar momentum of the close, and
triggers an alert when the momentum becomes positive while experiencing volume that
is greater than twice the 50-bar average. In addition, commentary is written to help
point out the market conditions bar by bar.

Plot1(Cl ose - Close[10], “Mnentuni);

#Begi nCmtryOrAlert ;
If Plotl > 0 Then
Conmment ary(“Mnmentumis positive, ")
El se
Conment ary(“Mnmentum i s negative, ");

The Basic EasyLanguage Elements Understanding Arrays 45

If Volume > Average(Vol une, 50) Then Begin
Comment ary(“and volune is greater than average.”);
If Volunme > Average(Volune, 50) * 2 Then
Alert;
End
El se
Comment ary(“and volune is | ower than average.”);
#End ;

Understanding Arrays

Arrays are variables that store multiple values simultaneously. Think of an array as
being like a spreadsheet, which has a predetermined number of cells. For example, an
array called MyArray that has 6 cells (which in an array are called elements) will look
like a one-column spreadsheet document, as shown in Figure 2-5.

SNl S A R o |
L O M ok

5
Figure 2-5. Array with one dimension

The example array in Figure 2-5 is said to have one dimension and 6 elements; you refer-
ence the information in the array using one number. For example, in the above array, ele-
ment 1 contains a value of 3, and element 2 contains a value of 5.

However, you can define arrays with multiple dimensions. For example, you can define a
two-dimensional array, which will look like multiple rows and columns in a spreadsheet
document, as shown in Figure 2-6.

0 T [2 [3]
S50301 1400 10026 1000500
950503 1200 105.5 1554000
950312 1105 G93.75 1238900
S51209 1015 95 625 2103200
So0225 1345 101.75 1930300
990511 985 103.1260 2103700
5] So0725 1540 105.375 1600300

Figure 2-6. Array with two dimensions

M| &= || k| — |3

46 Understanding Arrays CHAPTER 2

In this case, you use two numbers to reference each element [row, column]. For example,
the illustration above shows a two-dimensional array containing 27 elements. Element [1,
0] contains the value 980503, and element [5, 2] contains the value 103.125.

Or, you can define an array with three dimensions, which we can envision as looking more
like a cube, with rows, columns, and multiple layers. To reference the element of a three
dimensional array, you’ll use three humbers (e.g., element [1,0,1]).

You can define an array with up to 10 dimensions. It is hard to envision an array with more
than three dimensions, let alone 10 dimensions; instead, just understand that to reference
an element in a 4-dimensional array, you’ll need to specify four numbers (e.g., element [2,
1, 1, 3]) and to reference an element in a 10-dimensional array, you’ll need to specify 10
numbers (e.g., element [1, 3, 6, 1, 0, 4, 5, 2, 1, 1]). The numbers are the address where a
value is stored.

Like variables, arrays are place holders that can hold values, although instead of being able
to hold only one value, they can hold as many values as the number of elements they have
available.

Arrays are used for many different purposes, the most common being to store informa-
tion about relevant market conditions during the analysis of price data—to store infor-
mation about what happened during previous bars.

For example, Figure 2-6, illustrates a multi-dimensional array with four columns and sev-
en rows that was used to store information on seven different bars; each row corresponds
to a bar, and each column corresponds to a piece of information for that bar (date, time,
price, and volume for each bar).

Arrays can store either numeric, true/false, or text string expressions, but they can only
store one type of expression at a time. Also, the values in all elements of the array are car-
ried forward from bar to bar.

Note: When working with RadarScreen or OptionStation, where you are analyzing
multiple symbols simultaneously, keep in mind that using arrays will add to the
processing time and the resources required, and the time and resources required is
multiplied by each symbol being analyzed.

When working with arrays, you declare an array, assign values to the elements of the array,
and reference the values of the elements within an array. How to do each is discussed next.

Declaring Arrays

Before you can use a name as an array, you must ‘tell” EasyLanguage that the name is to
be used as an array; this is known as declaring the array(s). To declare an array, you use an
Array Declaration statement. When you declare an array, you also specify the array’s
dimensions (and the number of elements in each dimension), and the initial value for all the
elements.

Syntax:

Array: MyArray[M (N);

The Basic EasyLanguage Elements Understanding Arrays 47

MyArray is a user-defined name for the array, which can be a total of 20 characters in
length, M is a number (or numbers) specifying both the dimensions of the array and the
number of elements in each dimension, and N is the initial value of all the elements in
the array.

For example, the following statement declares a one-dimensional array with a total of
6 elements:

Array: MyArray[5] (0);

The array called MyArray will have elements 0, 1, 2, 3, 4, and 5. The elements in this
array will start with a value of zero (0).

The following Array Declaration statement declares a 3-dimensional array with a total
of 726 elements:

Array: MBI gArray[10, 10, 5](0);

The array MyBigArray will hold a maximum of 726 elements (11x11x6) and all
elements will begin with a value of zero (0).

Once declared, the size of the array cannot be changed; whatever dimensions the array
is created with will be constant throughout the EasyLanguage trading signal, analysis
technique, or function.

You cannot use inputs, variables, or any other numeric expressions when defining the
size of the array in the Array Declaration statement. You must use a numeric literal
(i.e., a number).

Arrays can hold all three types of EasyLanguage expressions: numeric, true/false, and
text string. In order to create arrays that hold each different type of expressions, set the
initial value of the elements using the desired type of expression. For example, to create
an array that holds true/false values, you can use the following Array Declaration
statement:

Array: MyTFArray[10] (Fal se);

The above statement creates a single dimension array with a total of 11 elements, all of
which are set to False to begin with. Likewise, to create an array that will contain text
string expressions, you can use the following statement:

Array: MyTextArray[10]("");

Assigning Values to Elements in an Array

Once you have declared your arrays(s), you can assign values to the elements in the array
at any point in your trading signal, analysis technique, or function.

Syntax:
MyArray[M = EasylLanguage expression ;

48 Understanding Arrays CHAPTER 2

MyArray is the name of the array and M is a numeric expression representing the element
in the array to which you are assigning the value. EasyLanguage expression is the value
that you are assigning to the element.

For example, the following statement assigns a value of 10 to element 5 of the one-
dimensional array called MyArray:

MyArray[5] = 10 ;

The following instructions store the closing prices and volume for each of the last 10
bars in a two-dimensional array:

Array: MArray[9, 1](0) ;

For Valuel = 0 To 9 Begin
MyArray[Val uel, 0] = d ose[Val uel] ;
MyArray[Val uel, 1] = Vol une[Val uel] ;
End ;

Loops are often used to populate arrays. In the above instructions, an array called
MyArray is declared. It is a two-dimensional numeric array, with a total of 20 elements,
all of which are initialized to a value of 0.

The loop uses the pre-declared variable Valuel as the control variable, and the loop
will iterate through the instructions 10 times (0 to 9). On the first iteration, the close of
the current bar (Close[0]) is assigned to MyArray[0,0], and the volume of the current
bar (Volume[0]) is assigned to MyArray[0,1]. Valuel is incremented to 1 for the
second iteration through the loop, so now the close and volume of one bar ago are
stored in the array, in MyArray[1, 0] and MyArray[1,1], respectively. Again, this loop
iterates a total of 10 times, and the result is that the closing prices and volume for the
current and previous 9 bars are stored in the array, for reference at any time.

Referencing Values of Array Elements

Once you have declared an array, and you have assigned values to elements in the array,
you can reference the values of the elements by using the name of the array and the element
number in place of the numeric, true/false, or text string expression.

For example, the following statement assigns the value held in element 10 to the
numeric variable Valuel:

Val uel = WArray[10];

Also, arrays can be used wherever an expression can be used. For example, you can
plot the value held in element O of an array:

Pl ot 1(MyArray[0]);

Or, you can use the true/false value of an element in an array as the true/false
expression in an IF-THEN statement:

The Basic EasyLanguage Elements Understanding Arrays 49

If MyConditionArray[7] Then
{BasyLanguage instruction } ;

You can also reference the previous value of an array. For example, the following
statement references the value that element 5 of an array called MyArray held 10 bars
ago:

Val uel = MyArray[5][10];

It is important to keep in mind the size of the array because the application to which you’ve
applied the trading signal or analysis technique will generate a runtime error and turn off
the analysis technique if you reference or assign a value to an element that does not exist in
the array.

For example, the indicator below uses a loop to reference element 11 in an array that only
has elements 0 through 8, the application to which you applied the indicator will generate
a runtime error and turn off the indicator:

Array: MyArray[8](0);
For Valuel = 1 To 11 Begin

MyArray[Val uel] = Val uel;
End;

Advanced Tip: “Working with Series Arrays”

As a memory optimization, EasyLanguage automatically determines if a prior value
of any element of an array is accessed at any point in the trading signal, analysis
technique, or function, and then, if required, stores the historical values for the array.
EasyLanguage stores only as much history as it needs to fulfill the MaxBarsBack
setting. For example:

Val uel M/Array[5] [10] * 1.05;
Val ue2 = MyQt her Array[6] - Val uel ;
Pl ot 1(Val ue2);

The indicator stores all the prior values of MyArray, given that a historical value of
the array is referenced in the first line. The variable Value2 and MyOtherArray are
both simple, thus historical values for this variable and array are not stored.

In other words, arrays can be either series or simple structures. This is important
when you want to access the values of array elements from third-party languages
through DLLs because depending on the state of the array, there will be more or less
historical data stored than you require. In this scenario, you can force an array to be
a series array by referencing a previous value of an element in the array in your
trading signal, analysis technique, or function (i.e., by using a ‘dummy’ statement).
Or, you may want to consider working with functions; you can force a function to be
a series function. Refer to the next section in this chapter titled, ““Understanding User
Functions” on page 50 for more information.

50

Understanding User Functions CHAPTER 2

Understanding User Functions

A user function is a defined set of instructions that you reference by name, and that return
a value. The value returned by functions can be numeric, true/false, or text string, and
you can use functions in any part of a statement that requires a value.

For example, in trading, it is very common to calculate the range of a bar (the high minus
the low). Every time EasyLanguage users need to calculate the range of a bar, they don’t
need to write out the expression (High - Low) because EasylLanguage provides a function
called Range. Whenever you need the calculation for the range of a bar, you can use the
EasylLanguage user function Range instead of writing out the expression. Range is one
of the simplest functions available in EasyLanguage; there are hundreds of functions
available for your use, plus you can write your own.

Another concept you need to understand when working with functions is the concept of
parameters. When necessary, user functions are written with parameters (also referred to
as inputs or arguments). Parameters allow the person using the function to provide pieces
of information that the function needs to perform its calculations.

For example, the user function Average is written with a parameter called Length.
Therefore, instead of having one function for a 10-bar average, another for a 12-bar
average, and another for a 15-bar average, etc., there is only one Average user function,
and the user can specify the number of bars the function will use to calculate the average.

Also, creating a function to calculate the average of the close, another for the average of
the open, another of the average of the volume, etc. would be very inefficient. Therefore,
the Average function also has a parameter called Price which enables the user to specify
the price or data that will be averaged.

The following statement calculates the average of the closing prices of the last 10 bars
and assigns the result to the variable Valuel:

Val uel = Average(C ose, 10);

The parameters for user functions are enclosed in parentheses after the function, and each
parameter is separated by a comma. Depending on the function, parameters can be required
or optional. Parameters are discussed in detail in “Understanding Parameters and Parameter
Types” on page 58.

Using Existing Functions

For your convenience, the EasyLanguage PowerEditor provides the EasylL anguage Dictio-
nary—which is a tool that lists all the EasylLanguage reserved words and existing user func-
tions, grouped by category. The EasyLanguage Dictionary allows you to browse and/or
search through the list of words and functions, and provides direct links to the Online User
Manual.

All TradeStation Technologies products are provided with a vast library of built-in user

functions, which range from commonly-used industry calculations (e.g., ADX, DMI, CCI)
to common mathematical and statistical operations (e.g., AbsValue, Sine, Square). When-
ever you need to perform a calculation, instead of writing the calculation yourself in Easy-

The Basic EasyLanguage Elements Understanding User Functions 51

Language, first use the EasyLanguage Dictionary’s Find feature to search for an existing
function that will perform the calculation. You can also use the functions as a reference or
learning tool when writing your own functions.

If you are not sure if a function will do exactly what you want, highlight the function in the
EasyLanguage Dictionary and click the Define button for a description of the user function
and its usage.

The EasyLanguage Dictionary is an indispensable reference that you will be using often as
you work with EasyLanguage.

Referencing Previous Values of Functions

You can reference the values of functions on previous bars. For example, the following
statement refers to the value of the 10-bar average of the volume one bar ago:

Val uel = Average(Vol urme, 10)[1];

In the above example, the function itself is being offset.

Using Previous Values as Parameters
You can also offset the value that you pass as the parameter. For example, you can also
write the following statement:

Val uel = Average(Vol urme[1], 10);

What is offset is the value that is passed into the function as the parameter, not the function
itself. In the above example, the function will use the previous bar’s volume to perform the
calculation. In this instance, the results are the same for both of the above statements. How-
ever, the difference in the results can be significant depending on the calculation being per-
formed.

For example, suppose there is a function called OpenDiff that calculates the difference be-
tween the open of the current bar and the value passed to the function through the parame-
ter. The function takes the value passed and subtracts it from the open of the current bar
using the following formula: OpenDiff = Open - Price where Open is the opening price of
the bar and Price is the parameter for the function. Assume you write the following state-
ment:

Val uel = Qpenbi ff(C ose)[1];
EasylLanguage obtains the value of the function on the previous bar. The value returned is

equal to the open of the previous bar minus the close of the previous bar. However, assume
you write the following statement instead:

Val uel = QpenbDi ff(C ose[1]);

The function will subtract the close of the previous bar from the open of the current bar,
yielding a completely different result than the previous statement.

52 Understanding User Functions CHAPTER 2

Using Data Aliases

When applying a trading strategy or analysis technique to a price chart or grid, the proce-
dure is applied to a data stream. This can be a data stream on a chart, one of the symbols
in a Position Analysis window, or a symbol in a RadarScreen window.

By default, all trading strategies and analysis techniques are based on the data stream to
which the procedure is applied and all calculations default to using the data from it. How-
ever, you can refer to any available data stream.

For example, you can apply an indicator to a price chart of OMGA and the Dow 30 Index
that references both symbols. Or, you can apply an indicator to the underlying asset in the
OptionStation Position Analysis window that refers to the prices of an option listed in the
window.

To refer to a data stream other than the one to which the trading strategy or analysis
technique is applied on a chart, you add the data alias of dataN after the function. For
example, the following statement calculates the 20-bar average of the close of the second
symbol in a price chart even though the indicator is applied to the first symbol:

Val uel = Average(Cd ose, 20) of data2 ;

For example, when an indicator is applied to a stock that is plotted as Datal, and the second
data stream is the Dow 30, the indicator can calculate the 10-day average volume of the
Dow 30 and incorporate this calculation into the analysis of the stock. The statement would
be written as follows:

Val uel = Average(Vol ume, 20) of data2 ;

Again, when no data alias is specified, EasyLanguage assumes the function is meant to be
based on the data stream to which the procedure is applied. So, if an indicator is applied to
a price chart that has three stocks, and the following statement is used in an indicator:

Val uel = Average(Vol une, 20);

...the average of the volume will be calculated based on the symbol to which the indicator
is applied.

Note: When formatting the indicator on a price chart, under the Properties tab there
is an option to choose what symbol the indicator is based on, as shown in Figure 2-7.
This selection displays the data stream to which the indicator is currently applied.

The Basic EasyLanguage Elements Understanding User Functions 53

Format Indicator: Moy Avg 1 line B I

Inputs' Sthyle | Sealing Properties |

Max number of bars study will reference
’7(3' futo-detect € User specified IED

ase study on:

H arp
2(IMTC) Intel Corp LAST-D il
F[DELL) Dell Computer Carp LAST -Doaily

™ Enable &lert
v Update every fick
™ Use alert/max bars as study default

QK I Cancel | Help |

Figure 2-7. Indicator Properties tab

In RadarScreen and in OptionStation, when no data alias is specified, the symbol corre-
sponding to the row in which the indicator is applied is the default data stream. For infor-
mation on how to refer to other data streams in RadarScreen and OptionStation, read the
chapter on EasyLanguage specific to that product.

When working with price charts, you can also base only the parameter for a function on
another data stream as opposed to the entire function. Consider the following statement:

Val uel = Average(Vol umre of data2, 10);

In the above statement, the data alias is used in the parameter of the function.

As with bar offsets, the difference between using a data alias for the entire function versus
the parameter is subtle, but it can result in significantly different results depending on the
calculation being performed.

For example, let’s use the function we used earlier to discuss bar offsets, OpenDiff. This
function calculates the difference between the open of the bar and a value passed to the
function. The function subtracts the value from the open of the current bar: OpenDiff =
Open - Price. Assume we write the following statement:

Val uel = OpenDi ff(C ose) of dataZ?;
EasylL anguage bases the entire calculation of the function on the second data stream; it uses

both the open and the close of the second data stream, and it returns the difference. Now,
assume we rewrite the statement as follows:

Val uel = OpenDi ff(C ose of data2);

54

Understanding User Functions CHAPTER 2

The function is based on the first data stream, but will calculate the OpenDiff function using
the open of the current bar of datal and the close of the current bar of data2. The value re-
turned would be the value of the first data stream’s open minus the second data stream’s
close.

Writing User Functions

The only statement required in a function is the one that specifies what value the
function will return. This statement is called the Function Value Assignment statement,
and it consists of the name of the function followed by an equal to sign (=) and then
the expression representing the value of the function.

For example, if there is a function called One that returns the numeric value 1, all the
function needs is the statement:

Likewise, a function named HigherHigh that returns true if the current bar’s high is greater
than the previous bar’s high can be written using the following statement:

H gherHi gh = Hi gh > Hi gh[1];
The value of True or False is assigned to the function HigherHigh by means of the Function
Value Assignment statement, and this value is returned as the value of the function.

Or, a function called TenBarAvg that calculates the 10-bar average of the volume using a
For loop would look like this:

Val ue2 = 0;
For Valuel = 0 To 9 Begin

Val ue2 = Val ue2 + Vol une[Val uel];
End;

TenBar Avg = Val ue2 / 10;

A function can return a numeric, true/false, or text string value. You specify what type
of value the function will return when you create the function or format its properties
in the EasyLanguage PowerEditor, as shown in Figure 2-8.

The Basic EasyLanguage Elements Understanding User Functions 55

Function Properties - MyFunction
General |
Hame:
IM WFuncion
MNates:
Example;
Return type Function storage
% Numeric o futo-detect
" TieFakse € Simple
€ Shiing [Text) " Series
0k Cancel Help

Figure 2-8. Function Properties in the EasyLanguage PowerEditor

Any of the EasyLanguage components explained in this chapter; for example, IF-THEN
statements, loops, variables, arrays, math and relational operators, and even other
EasyLanguage functions can be used to perform calculations within an EasyLanguage
function, and once you calculate the desired resulting value, you assign the value to the
function name using a Function Value Assignment statement.

Understanding Function Types: Simple & Series

Most functions are simple functions. These functions perform a calculation and return a val-
ue. However, some functions are series functions. Series functions reference previous val-
ues of the function itself, variables and/or arrays within the function. When the function
includes counters and accumulation operations from bar to bar, they are series functions.

Using a previous value of the function within the function itself is a commonly used tech-
nique, and in fact, many industry standard indicators—exponential averages, ADX,
MACD—use this technique, and the Larry Williams Accumulation-Distribution Indicator
accumulates values from bar to bar. Let’s look at the considerations involved with each
type of function.

Simple Functions

Simple functions cannot refer to previous values of the function itself, or previous values
of any variables or arrays declared in the function when performing its calculations.

Simple functions require less memory and calculate faster than series functions. This is be-
cause the resulting values of these functions, and all their variables and arrays, are not cal-

56 Understanding User Functions CHAPTER 2

culated and stored on a bar by bar basis. These functions are calculated only when they are
called by the trading signal or analysis technique.

The function called Summation, included in your EasyLanguage PowerEditor and shown
below, is an example of a simple function:
I nputs: Price(NunericSeries), Length(NurmericSinple) ;
Vari abl es: Counter(0), Sunm(0) ;

Sum = 0 ;

For Counter = 0 To Length - 1 Begin
Sum = Sum + Price[Counter];
End;

Sunmmati on = Sum ;

Even though the function references previous values of a parameter (Price), it is a simple
function because it does not reference previous values of itself, or of any variables or ar-
rays.

Series Functions

A series function can refer to previous values of itself, or previous values of any variables
or arrays declared in the function when performing its calculations. Series functions are ex-
ecuted on a bar by bar basis even if the function is not explicitly called on each bar. When
variables or arrays are used as parameters, the series functions are calculated each and ev-
ery time they are called. Otherwise, the function is calculated once per bar, at the end of the
procedure.

To illustrate why series functions are executed on each bar, let’s look at the BarNumber
function, which is included in the EasyLanguage PowerEditor. This function counts the
number of bars that have passed since the trading signal or analysis technique started its
calculations. This function is written using only one statement, as follows:

Bar Nunber = Bar Nunber[1] + 1;
To obtain the current bar’s value, this function will read the value of itself from one bar ago,

and add one to that value. This way the function will keep a running total of the number of
bars. Assume we use this function in an indicator, as follows:

If Close > Open Then
Pl ot 1(Bar Number);

The Basic EasyLanguage Elements Understanding User Functions 57

Following is a table that illustrates the first eight bars of a chart.

ARRLRET

185 |Yies [Yes | Yos | Yas| Mo | Mo | Yes

EartJumbar function
cabed Dy indicaory

Eartumbar

. - - P "
I~'IE e ..:'] 4 w E i

L

Figure 2-9. Series function example - BarNumber

As seen in Figure 2-9, the function is called during bars one through five (because the
close is greater than the open) yet the condition necessary to call the function is not true
for bars six and seven. If the function were not calculated during those bars, it could not
increment its value to keep an accurate count of the bar number. Furthermore, if on bar
eight, the function referred to BarNumber[1], it would not be clear to what value the
function is referring.

Again, if a series function is not called on a specific bar, it is executed at the end of the pro-
cedure in order to perform the calculations and store all values—of the function itself and
any variables and/or arrays in the function—for later reference by the function itself.

Also, if the same series function is called two or more times in a bar using the same pa-
rameters, and the function does not use variables or arrays as parameters, then the func-
tion is only calculated once per bar, and the value resulting from this initial calculation
is used for the other times the function is called (to maximize calculation speed). How-
ever, if a function uses a variable or array as a parameter, or has different parameters,
then the function is calculated each and every time it is called within the bar. For exam-
ple, assume you wrote the following indicator:

MyVal uel = MySeri esFunction(d ose, 25);
MyVal ue2 = MySeri esFuncti on(Cd ose, 25);
MyVal ue3 = 10;

If Conditionl Then
Val uel = XAverage(C ose, MyVal ue3d);

MyVal ue3 = 20;
If Condition2 Then
Val uel = XAverage(C ose, MyVal ue3d);

58 Understanding User Functions CHAPTER 2

The first two lines call the same series function, and they do not use variables or arrays
as parameters; therefore, the function MySeriesFunction is calculated only once and
the value is assigned both to MyValuel and to MyValue2.

However, the function XAverage uses a variable as a parameter; therefore, the function
is calculated twice each bar. This is to make sure that the function is calculated with
the most current value of the variable that is used as the parameter. In the above
example, the value stored in MyValue3 does indeed change for the second calculation
of the function. Parameters are discussed in detail in the next section.

Also, when you’re receiving data on a real-time/delayed basis, and have the Update ev-
ery tick option enabled for an analysis technique (or the Generate orders for next bar
option for trading strategies), EasylLanguage evaluates the analysis technique or trading
strategy as well as any series functions that are referenced by the analysis technique or
trading strategy, for each new tick. To keep accumulated values accurate, each time a
new tick is received, all variables, arrays and function values are “pushed-back” to their
values from the previous bar, and the calculation based on the most recent tick is per-
formed. This ensures that the trading signals, analysis technique, and functions perform
their calculations as though each tick were the last tick of the bar.

Advanced Tip: Speeding Up Calculation Time

When you use a series function as a parameter for a simple function, and that
particular parameter is used repeatedly throughout the simple function, the
calculation time for the trading strategy or analysis technique can increase
noticeably. This situation produces an increase in overhead because the series
function must be calculated each time that the simple function is referenced. To
avoid this situation, assign the series function to a variable and then use the variable
as the parameter for the simple function. This simple adjustment eliminates the
overhead, since the series function is only called once, when it is assigned to the
variable.

Understanding Parameters and Parameter Types

Many functions are written such that they ask you provide certain information to them
when you use them. You provide information to a function by means of parameters.

There are three types of parameters: numeric, true/false, and text string:

= Numeric - When a parameter is defined as numeric, the user of the function can pass
any number (e.g., 5, 10, or 100) or numeric expression as the parameter into the
function. This parameter will be used within the function as a numeric expression.

m True/false - When a parameter is defined as true/false, the user of the function can
pass any true/false expression (or the words True or False) as the parameter into the
function. These parameters can then be used within the function as a true/false
expression.

m Text string - Text string parameters allow the user of the function to pass any text
string value (e.g., “ABC”) or text string expression as a parameter into the function.
These parameters can then be used within the function as a text string expression.

The Basic EasyLanguage Elements Understanding User Functions 59

Like the function itself, a parameter can be of subtype simple, series, or it can be of another
subtype, type reference. Each subtype is described next.

Simple Parameters

Simple parameters are constant values that are set in the trading signal or analysis technique
that calls the function. Simple parameters require less memory and improve speed. They
retain their values within the function; simple parameters cannot have values assigned to
them within the body of the function.

When the user is expected to provide a number, for instance (i.e., 10, 15, or 20), you should
define the parameter as numeric simple. For example, the Average function provides a pa-
rameter called Length, which enables you to specify the number of bars to use when calcu-
lating the average. Since this number does not change from bar to bar (it is a fixed number
such as 9, 18, or 50) there is no need to store previous values of it. Therefore, to improve

speed and memory usage of the function, Length is defined as a numeric simple parameter.

When the function calls for a simple parameter, the user can supply any value, function,
variable, or array.

Series Parameters

Like simple parameters, series parameters are constant values that are set in the trading sig-
nal or analysis technique that calls the function. However, when the function refers to pre-
vious values of the value you use as the parameter (e.g., Valuel, Condition1, or Close), then
this parameter must be defined as a series parameter.

The values of series parameters are stored for each bar, and current and historical values
are accessible from within the body of the function. This allows the function to refer to the
previous bar’s value of the parameter (regardless of whether the function itself is of type
simple or series). Series parameters consume more memory and impact the speed of your
calculations to some extent, but they are needed to refer to historical values of the parame-
ter.

For example, the Average function provides a parameter called Price, which enables you

to specify what value is going to be averaged. To calculate a 10-bar average of the close,

the function will need to access the last 10 closing prices of the symbol; therefore, the pa-
rameter Price is defined as a numeric series parameter.

However, series parameters cannot have values assigned to them within the body of the
function. When the function calls for a series parameter, the user can supply any value,
function, variable, or array.

Reference Parameters

Parameters can be passed by value or by reference. When the parameter passes information
by value, as is the case with simple and series type parameters, the function creates a copy
of the information passed into it, and whatever is done with the parameter in the function
does not affect the value of the parameter within the trading signal or analysis technique
that called the function.

However, when information is passed by reference, the function uses the original informa-
tion from the trading signal or analysis technique that called the function, and any calcula-
tions the function performs on the parameter are reflected in the value of the parameter

60 Understanding User Functions CHAPTER 2

within the trading signal analysis technique that called the function as well as within the
function.

This is best visualized using an example. Suppose that you have added a picture to a word
processor document. If a picture is added by value, a copy of the picture is created in the

word processor document. If the original picture is modified, the picture in the word pro-
cessor document remains unchanged, and vice versa.

However, if the picture is inserted by reference, the document uses the original picture, and
if the picture is modified in the word processor document, the original picture is modified
as well. Also, if the original picture is modified, the picture in the word processor document
reflects the change.

When a parameter passes information by value, it can be either simple or series. When it
passes information by reference, it must be of type reference. You can use variables, func-
tions, and arrays when the function calls for reference parameters.

When a variable is passed by reference, the function will use the variable from the trading
signal or analysis technique that called the function, so any operations the function per-
forms on the parameters will be reflected in the variable in the trading signal or analysis
technique as well as in the function.

For example, suppose there is an indicator that calculates two numbers representing the up-
per and lower values of a channel. Instead of creating two functions, one to calculate the
upper band and one to calculate the lower band, a function can accept two variables by ref-
erence. Then, the function can calculate these two values and assign the result to each one
of the variables passed by reference. Once the function is called, the variables in the indi-
cator will have the values corresponding to the upper and lower bands.

Figure 2-10 shows the EasylL anguage for the Bands Indicator. The function we wrote to
calculate the two bands is called MyBands. Notice how the variables for the indicator are
also the parameters we passed by reference to the MyBands function.

<8 Bands Indicator [Indicator) M=l E3

{**#***#****#********#****#***#****#****

-

Written by: Omega Research —

Description: example
www*wwwwww**ww**www**www**ww**www**w}

Vars: UpperBand(0), LowerBand(0):

valuel = MyBands (UpperBand, LowerBand):

Plotl (UpperBand, "UE™):
Plotz (LowerBand, "LE™):

Figure 2-10. Indicator using a function with inputs passed by reference

The Basic EasyLanguage Elements Understanding User Functions 61

The MyBands function is shown next. This function defines the upper band as the highest
high of the last 10 bars, and the lower band as the lowest low of the last 10 bars.

I nputs: UpperBand(Nuneri cRef), LowerBand(Numeri cRef);

Upper Band = Hi ghest (Hi gh, 10);

Lower Band = Lowest (Low, 10);

MyBands = 1;
Notice that the function assigns a value of 1 to MyBands. This is a required statement, and
in the indicator, the value (1) is assigned to the variable Valuel. Remember that every func-
tion must contain an assignment statement, and will return the value assigned. However,

the purpose of the function in the example is to calculate and assign the values to the
UpperBand and LowerBand variables, and these values are used by the indicator.

Given that the values of variables and arrays are stored on a bar by bar basis, reference pa-
rameters allow the reference of previous values using bar offsets.

The first line in the above function is an Input Declaration statement, which specifies the
parameters that must be supplied by the user when using the function. The next section cov-
ers how to declare the parameters when writing a function.

Defining Parameters

As discussed in the previous section, parameters can be of type numeric, true/false, or
string, and they can be of subtype simple, series or reference.

When writing a function, you must define what parameters the function will require from
the user of the function. To do so, you use the Input Declaration statement. You can declare
multiple parameters (of same or different types) using one Input Declaration statement. For
example:

| nput: MyNunber (Nuneri cSi npl e);

The above Input Declaration statement declares a numeric simple parameter. To define
a numeric series parameter, you use:

| nput: MyNunber (NunericSeries);
To define a numeric reference parameter, you use:
I nput: MyNunber (Nuneri cRef);

The prefix determines the type: Numeric, TrueFalse, or String, and the suffix determines
the subtype, Simple, Series, or Ref. For example, to define two true/false parameters, one
series and one reference, you would use the following Input Declaration statement:

I nputs: MyVal ue(TrueFal seSeries), MyVal uel(TrueFal seRef);

Or, to define a string simple parameter:

I nput: MyString(StringSinple) ;

62 Understanding User Functions CHAPTER 2

Note: You can define the parameter as Numeric, TrueFalse, or String, without
specifying the subtype. In this case, EasyLanguage automatically detects whether the
parameter is simple or series (however, if the parameter is subtype reference, you must
explicitly define it as such).

Working with Arrays

Declaring a parameter as an array is a little different. To declare an array, you must
specify whether it is numeric, true/false, or string, that it is an array, and whether or not
it is of subtype reference.

Syntax:
I nput: MyArray[M (I nput Type);

MyArray is the name of your array, M is the expression representing the size and dimen-
sions of the array, and Input Type is one of the array parameter types:

= NumericArray

= NumericArrayRef

m TrueFalseArray

m TrueFalseArrayRef

m StringArray

m StringArrayRef

Note: The suffix ‘Ref’ is used when you are passing the array by reference; those
without are expecting an array passed by value.

When the array used has more than one dimension, use a corresponding list of letters sep-
arated by commas. For example, the following Input Declaration statement means the func-
tion is expecting a numeric array with three dimensions:

I nput: MyNunericArray[X, Y, Z] (Nureri cArray);

When the array is sent from the trading signal or analysis technique to the function, these
letters (in the above example, the letters X, Y, Z) will take the numeric values correspond-
ing to the size of the array, and you can use the words within the body of the function to
work with the array. For example, if a function receives a one dimensional true/false array,
the following statements can be used to traverse the array using a For loop:

I nput: MyArray[M (TrueFal seArray);

Value2 = 0 ;
For Valuel = 0 To M Begin

Val ue2 = Val ue2 + MyArray[Val uel] ;
End;

The Basic EasyLanguage Elements Understanding User Functions 63

Given that the contents of the array are stored for every bar (to allow trading signals, anal-
ysis techniques, and functions to refer to previous values of the array elements), it is possi-
ble to refer to previous values of the array.

For example, assume you want the function to refer to value 10 bars ago of the first element
of an array passed into a function, in order to compare it to the current bar’s high. To do so,
you can use the following statements:

I nput: MyArray[M (Numeri cArray);

If MyArray[O0][10] > Hi gh Then
{ EasylLanguage instruction } ;

When an array is passed by value (i.e., when it is not passed by reference), it is not possible
to assign or modify the values of the elements of the array. However, the values can be read
and used within the body of the function, and you can refer to previous values of the ele-
ments.

For example, the following statements make up a function called MaxValArray, which will
find the maximum value stored in the array (but it doesn’t change the values of any of the
elements within the array):

I nput: MyNunericArray[M (Nuneri cArray);
Vari abl e: Result(0);
Result = MyNumeri cArray[0];
For Valuel = 1 To MBegin
I f MyNumeri cArray[Val uel] > Result Then
Result = MyNuneri cArray[Val uel];
End;
MaxVal Array = Result;

When an array is passed by reference, all its values can be modified in the body of the func-
tion; any changes made in the function will be reflected in the trading signal or analysis
technique that called the function.

For example, the following statements make up a function called SortMyArray that accepts
an array and sorts it using the ‘bubble sort’ technique (i.e., drops the value in the last ele-
ment of the array, fills each element with the value in the element before it, and places the
latest value in the first element):

64

Output Methods

CHAPTER 2

I nput: MyArray[N] (Nuneri cArrayRef);
Vari abl es: Done(Fal se), Counter(0);

Done = Fal se;

Whi | e Done = Fal se Begin
Done = True;
For Counter = 0 To N - 1 Begin
If MyArray[Counter] > MyArray[Counter+1] Then Begin
Val uel = MyArray[Counter];
MyArray[Counter] = MyArray[Counter +1];
MyArray[Counter + 1] = Val uel;
Done = Fal se;
End;
End;
End;

Sort WArray = 1 ;

Notice that a dummy statement is included in the above function (highlighted in gray).
The function returns the value 1; however, in this example, the true purpose of the
function is the manipulation of the array that you pass by reference. This array is
changed by the function, and the change is reflected in the trading signal or analysis
technique that called the function, regardless of the value the function returns.

The following statement calls the function in the above example.

Val uel = Sort MyArray(MArray[12]) ;

This statement could be included in any trading signal or analysis technique. Again, in
this case, the value stored in Valuel is of no importance. However, once the function
is called, the array MyArray is modified (in this case, a value has been added to the
array, and the existing elements bubble sorted).

Output Methods

In addition to the conventional means of plotting information, EasylLanguage provides
many ways of displaying information about the data being analyzed. Among the most use-
ful methods are Commentary, the Message Log window, the Debug window, and writing
to a file. This section discusses these four alternative output methods.

Working with Commentary

The objective of creating commentary for a trading signal, analysis technique, or
function is to send additional information about the specific price bar selected by the
user of the procedure to the Expert Commentary window. The information sent can be

The Basic EasyLanguage Elements Output Methods 65

anything you want; for example, market commentary or debugging messages can be
included in the commentary text for the user to review. An example of commentary is
shown in Figure 2-11.

I8 TradeS lation Chait - [JMGA] Omega Research Inc LAST -Daily

OMGA LAST-Daily 12/02/1989 C=5.625 -375 -6.25% O=6.063 H=6.125 L=5563 v=52400

— F10.000
4 Expest Commentary for TradeStation I =] B L3 500
& 2]

(OMGA) Omega Research Inc LAST-Daily -11/17/1999 re.500
hov Avg 2 lines (Indicator) ta.oon
Conventional Interpretation: The market is bullish because the fast moving average
s above the slow moving average [7.500
tAdditional Analysis: Even though based on conventional interpretation the market is [7.ono
echnically bullish, we will not classify it as extremely bullish until the i[L5.500

ollowing occurs: the fast moving average slope is up from the previous bar, price goes
above the fast moving average, price goes ahove the slow moving average

W

Important: This commentary is designed solely as a training tool for the understanding of l [5.500

echnical analysis of the financial markets. It is not designed to provide any investment

or other professional advice. F5.000
Vo F4.500
r4.000
T, I T T
Sep Oct oy
| |

Figure 2-11. Chart with the Expert Commentary window

Note: In the case of grid applications, like the OptionStation Position Analysis
window, the commentary will always be based on the most current bar, since there is
no way to select a historical bar in a grid application.

It is important to remember that when commentary is requested for a bar, the trading
strategy or analysis technique is recalculated for the entire chart or symbol on the grid
(similar to turning the status of the trading strategy or analysis technique off and then
on). This is needed because due to the optimization routines used by EasyLanguage,

certain calculations are only performed when commentary is obtained; therefore, when
commentary is requested, these calculations need to be performed from the beginning
of the chart or entire data set.

The reserved words used to work with commentary are described next.

Commentary

This reserved word sends the expression (or list of expressions) to the Expert
Commentary window for whatever bar is selected on the price chart (or the last bar in
the case of a grid application).

You can use this reserved word multiple times, but it does not add a carriage return
after the expression or list of expressions.

66

Output Methods

CHAPTER 2

Syntax:
Conmment ary(MyExpression);

MyExpression is the numeric, text string, or true/false expression that is to be sent to
the Expert Commentary window. You can send multiple expressions; they must be
separated by commas.

To include a carriage return in your Commentary, use the reserved word NewLine as a
Commentary expression where needed. You can also use the reserved word
CommentaryCL instead (discussed next).

For example, the following statements produce the commentary shown in Figure 2-12

Commentary(“This is comentary ”);
Commentary(“witten in one line”);

i R |l -|
o QS| 2]

CORMGA) Divages Rasasanch inc LAST-Daly - 100170583

Thim s carmmenisry westisn inars ins

mpotant Tho cammeslars 5 deagyrad sowly @ @ lranng bzal lor the urderslasdng al
schmcsl snelyam of lha bnencis markslz 0w nol demgred Bz prosd e @y resstersand
jar piher professanel adoce

Figure 2-12. Expert Commentary window

As mentioned above, to include line breaks in the commentary, you need to use the
NewLine reserved word. For example, the following statements produce two lines of
commentary text:

Comment ary(“The 10-bar avg of the close”, Newline);
Commentary(“ is:”, Average(C ose, 10));

Also, you can create links in your Commentary text to the Windows Media Player (to play
an audio clip) and to definitions in the Online User Manual. The links are words in your
Commentary that appear in a different color and that when clicked, play an audio clip or
bring up the specified definition in the Online User Manual. These words are referred to as
jump words.

The Basic EasyLanguage Elements Output Methods 67

To create a jump word that plays a music ((WAV) file, enclose the complete file name and
path of the sound file using the following syntax:

\ wb<pat h\fi | enane>\ we

For example, to link your commentary to the file c:\windows\ding.wav, you could write the
following statement:

Commrentary(“This links to a file: \wbc:\ding. waviwe”);

To create a jump word that brings up the existing definition in the Online User Manual,
enclose the word using the following syntax:

\ pb<wor d>\ pe
or
\ hb<wor d>\ he

The Expert Commentary window uses the HELP_KEY WinHelp API call and retrieves
the specified topic from the TradeStation Technologies Online User Manual. The text
string between \pb and \pe is used as the keyword, and " , defined" (space, comma,
defined) is appended to the text string. For example, the following syntax retrieves the
topic Bottom, defined from the Online User Manual.

\ pbBot t om pe

The text string between \hb and \he is used as the keyword, and " (Indicator)" (space,
open parenthesis, Indicator, close parenthesis) is appended to the text string. For
example, the following syntax retrieved the topic ADX (Indicator) from the Online
User Manual.

\ hbADX\ he

Before creating a jump word, make sure the definition exists in the Online User
Manual. To determine that it exists, search the Online User Manual index. You can
create jJump words for any index entry that has the suffix ", defined" or " (Indicator)".

CommentaryCL

This reserved word sends the expression (or list of expressions) to the Expert
Commentary window for whatever bar is selected by the Expert Commentary pointer
(or for the last bar in the case of a grid application).

You can use this reserved word multiple times, and it will include a carriage return at
the end of each expression (or list of expressions) sent.

Syntax:
Conmment aryCL(MyExpression);

MyExpression is a single or a comma separated list of numeric, text string, or true/false
expressions that are sent to the Expert Commentary window.

68

Output Methods

CHAPTER 2

For example, the following statements produce the commentary shown in Figure 2-13.

Conment aryCL(“The cl ose of today is:”, C ose);
Conment aryCL(“The 10-day average of the close is:”,
Aver age(C ose, 10));

j Enpesit Commeniaig o TiadeS Lt

| W= %

{ORGA) Omaga Rassaich Ine LAST-Daily 11471929

b cloms ol laday e 5 DG
Thsi V0t atvanags of e Chada ia 7.75

Praporian: Thes comemntany is dessgnod solefy a5 @ frainieg tood for The undesstandimg of
pechneal analyus ol the hnancal markets: B e nof desigresd Eo primess snip imeesimant
por aibear prokesaional addoe

Figure 2-13. Expert Commentary window

You can also create links in your Commentary text to the Windows Media Player (to play
a video or audio clip) using the CommentaryCL reserved word. Refer to the discussion of
jump words in the description of the Commentary reserved word.

AtCommentaryBar

This reserved word returns a value of True on the bar clicked by the user with the
Expert Commentary pointer. It will return a value of False for all other bars. This
allows you to optimize your trading signals, analysis techniques, and functions for
speed, as it will allow EasyLanguage to skip all commentary-related calculations for
all bars except for the one where the commentary is requested.

Syntax:
At Conmrent ar yBar

The difference between AtCommentaryBar and CommentaryEnabled (discussed next)
is that CommentaryEnabled returns a value of True for ALL bars when the Expert
Commentary window is open, while the AtCommentaryBar returns a value of True only
for the bar clicked with the Expert Commentary pointer.

The Basic EasyLanguage Elements Output Methods 69

For example, the following statements display a 50-bar average of the volume in the
Expert Commentary window but avoids calculating this 50-bar average for every other
bar of the chart:
| f At CormentaryBar Then

Comment ary(*“The 50-bar vol avg: ", Average(Volume, 50));

Note: Although the statements that follow this reserved word are sometimes ignored,
the trading signal, analysis technique, or function still takes into account the
statements when it determines the number of bars necessary for the indicator or study
to perform its calculations (MaxBarsBack), also any series functions within the
statements are calculated. See the section “Using Commentary Compiler Directives™
for information on additional reserved words you can use to have the statements both
ignored completely.

CommentaryEnabled

This reserved word returns a value of True only when the Expert Commentary window
is open and Commentary has been requested. This allows you to optimize your trading
signals, analysis techniques, and functions for speed, as it allows EasylLanguage to
perform commentary-related calculations only when the Expert Commentary window
is open.

Syntax:
Conmrent ar yEnabl ed

The difference between CommentaryEnabled and AtCommentaryBar is that
CommentaryEnabled returns a value of True for ALL bars when the Expert
Commentary window is open, while the AtCommentaryBar returns a value of True only
for the bar clicked with the Expert Commentary pointer.

For example, the following statements calculate a cumulative advance/decline line to
be displayed in the Expert Commentary window:

| f Comment ar yEnabl ed Then Begin
If Close > Close[1l] Then
Val uel = Val uel + Vol une

El se
Val uel = Val uel - Vol une;
Comment ary(“The value of the AADIline is: ", Valuel);
End;

Note: Although the statements that follow this reserved word are sometimes ignored,
the trading signal, analysis technique, or function still takes into account the

statements when it determines the number of bars necessary for the indicator or study
to perform its calculations (MaxBarsBack), also any series functions within the

70

Output Methods

CHAPTER 2

statements are calculated. See the section “Using Commentary Compiler Directives™
for information on additional reserved words you can use to have the statements both
ignored completely.

Using Commentary Compiler Directives

These reserved words are complier directives that cause your trading signal, analysis
technique, or function to completely ignore the statements that follow the reserved
word unless the alert is enabled for the indicator or study. The trading signal, analysis
technique, or function will not take into account the statements following these words
when it determines the number of bars necessary to perform its calculations, nor will it
calculate any series functions.

#BeginCmtry

When the commentary statements are not necessary for the normal calculation of the
trading signal, analysis technique or function, use this reserved word, #BeginCmtry.
The statements between this compiler directive and the reserved word #End are
evaluated only when the commentary is requested. You must use the reserved word
#End with this reserved word.

Syntax:
#Begi nCmtry ;

{EBasyLanguage instruction(s) } ;
#End ;
For example, an indicator that calculates the 10-bar momentum of the closing price
needs ten bars in order to start plotting results. However, if commentary is added to this
indicator and the commentary uses a 50-bar average of the volume, then the
MaxBarsBack setting is increased to fifty. However, the 50-bar average is only used

for the commentary, so there is no need to have the indicator wait fifty bars before
giving results unless Commentary is requested.

To have the indicator plot after 10 bars and ignore the 50-bar requirement, the indicator
can be written as follows:

Plot1(Cose - Cose[10], “Mnentuni);
#Begi nCmt ry;
If Plotl > 0 Then
Commentary(“Mnmentumis positive, ")
El se
Comment ary(“Mnentumis negative, ");
I f Volume > Average(Vol une, 50) Then
Comment ary(“ and volume is greater than average.”)

El se

The Basic EasyLanguage Elements Output Methods 71

Commentary(" and volune is |ower than average.”);
#ENnd;

This indicator plots the momentum and the commentary states whether the momentum
is positive or negative, and if the volume is over or under the 50-bar average of the
volume. When the indicator is applied without using commentary, it will require only
10 bars to start calculating. When commentary is requested, the indicator is
recalculated, the statements within the compiler directives are evaluated, and the new
minimum number of bars required is 50. Any series functions within these reserved
words are also ignored.

#BeginCmtryOrAlert

When the commentary and alert statements are intertwined, and the commentary and
alert statements are not necessary for the normal calculation of the trading signal,
analysis technique, or function, use this reserved word, #BeginCmtryOrAlert. The
statements between this compiler directive and the reserved word #End are evaluated
only when either commentary is requested or the alert is enabled. The statements are
not considered when determining the MaxBarsBack setting, and any series functions
within these reserved words are ignored. You must use the reserved word #End with
this reserved word.

Syntax:
#Begi nCmtryOrAlert ;

{EBasyLanguage instruction(s) } ;
#End ;

For example, the following uses the same indicator as described in the previous
reserved word, but an alert is triggered when the volume is twice its average:

Plot1(Cose - Cose[10], “Mnentuni);
#Begi nCmryOrAlert;
If Plotl > 0 Then
Comment ary(“Mnmentumis positive, ")
El se
Conment ary(“Monmentum i s negative, ");

If Volume > Average(Vol une, 50) Then Begin
Comment ary(“ and volunme is greater than average.”);
If Volunme > 2 * Average(Vol une, 50) Then
Alert;
End
El se

Commentary(“ and volune is |ower than average.”);

72

Output Methods

CHAPTER 2

#End;

Using the Message Log Window

You can send any type of information to the Message Log window from trading
signals, analysis techniques, and functions. The Message Log window is an active
document that resides in the ProSuite 2000i Desktop within a workspace just like any
other ProSuite 2000i window. It has an extensive application program interface (API)
that allows other applications to interface with it and write requests to it.

Printing information into the Message Log should be done whenever additional
information that is not easily shown elsewhere is required from a trading signal,
analysis technique, or function. Examples of this type of information are specialized
reports or plain English messages that cannot be shown properly in a chart or grid
window. You can also send information to the EasylLanguage Debug window, which
resides in the EasyLanguage PowerEditor and is for use when debugging your trading
signals, analysis techniques, and functions. Refer to the next section for information on
sending text to the Debug window, file, or printer.

Note: As of Service Pack 3 of Version 2000i, the Message Log window is not installed
automatically (unless you are upgrading from a previous version). If you are not
upgrading, and you want to use the window, you must choose to install the window
from the Custom installation menu. This section assumes it is installed.

Messagelog

This reserved word sends an expression or comma-separated list of expressions to the
Message Log window.

Syntax:
MessagelLog(Expression);

Expression is any EasyLanguage expression, or a comma-separated list of expressions.
The expressions can be numeric, true/false, or text string, or any combination.

As mentioned above, the resulting expressions are sent to the Message Log window and
are displayed real time in the window. The Message Log has a limit of 255 characters
per line.

For example, the following statements send the date and time, the last traded price, the
highest high and lowest low of the current year, the volume, and the average volume
for the last bar of the chart to the Message Log:
I f LastBar OnChart Then Begin
MessagelLog(“Average Vol une: ", Average(Volume, 50));
MessagelLog(“Vol une: ", Vol une);
MessagelLog(“ H ghest High:", H ghY(0),“Lowest Low ”,LowY(0));

Messagelog(“Last: ", Cdose);

The Basic EasyLanguage Elements Output Methods 73

MessagelLog(“Date: ", ELDateToString(Date),” Time: ", Tine);
End;
The Message Log updates from the top down, the most recent line sent to the Message

Log is displayed at the top of the window. Keep this in mind when you send
information to it.

You can also format numeric expressions sent to the Message Log, as follows:

MessagelLog(Val uel:N:M);

Valuel is any numeric expression, N is the minimum number of integers to use, and M
is the number of decimals to use.

If the numeric expression being sent to the Message Log has more integers than what
is specified by n, the MessageLog reserved word will use as many digits as necessary.
The decimal values will be rounded to the nearest value.

For example, assume Valuel is equal to 3.14159 and we have written the following:

MessagelLog(Val uel: 0: 4);

The numeric expression displayed in the Message Log would be 3.1416.

Sending Information to the Debug Window, File, or Printer

You can send information from any trading signal, analysis technique, or function to
the Debug window. This window resides in the EasyLanguage PowerEditor, and can
be used to send text that would help you see intermediate calculations that are not
shown in the end results of the trading signal, analysis technique, or function, or any
message that would help determine the exact behavior of an EasyLanguage statement.

The EasyLanguage Debug window does not offer an API, nor can it be included in a
workspace (it resides in the EasyLanguage PowerEditor), but it is very efficient and
easy to use for debugging purposes.

Note: The Debug window replaced the Print Log, which was available in previous
versions of TradeStation Technologies products.

The same reserved word used to send information to the Debug window can be used to
send information to a file or printer instead.

Print

This reserved word sends information to the EasyLanguage Debug Window, a file, or
the default Windows printer. Regardless of where you send the information, the Print
reserved word always adds a carriage return at the end of the expressions, so each new
statement is placed on a new line.

74

Output Methods

CHAPTER 2

Syntax:
Print([Printer, | File(“<File Name>"),] Expression);

<File Name> is the complete path and name of the file to which the Print statement is
to send the expression(s), and Expression is any expression, or a comma-separated list
of expressions. The expressions can be numeric, true/false, or text string (or any
combination).

To use the Easyl anguage Debug window as the output method, include the list of
expressions without any additional information. For example, the following statement
sends the date, time, and close to the Debug window:

Print(Date, Tinme, dose);

You can format the numeric expressions displayed using the Print reserved word. To
do so, use the following syntax:

Print(Valuel:N:M);

Value 1 is any numeric expression, N is the minimum number of integers to use, and M
is the number of decimals to use. If the numeric expression being sent to the Debug
window has more integers than what is specified by N, the Print statement uses as many
digits as necessary, and the decimal values are rounded to the nearest value.

For example, assume Valuel is equal to 3.14159 and we have written the following
statement:

Print (Val uel: 0: 4);

The numeric expression displayed in the Debug window would be 3.1416. As another ex-
ample, to format the closing prices, you can use the following statement:

Print (ELDat eToStri ng(Date), Time, C ose:0:4);

To send information to the default printer, Printer needs to be the first expression
included in the parentheses of the reserved word. For example, the following statement
sends the date, time, and the close of every bar of a chart to the default printer:

Print(Printer, Date, Tine, Cose);

Print statements for historical bars print multiple lines per page; however, Print
statements for data collected on a real-time/delayed basis print at the close of each bar.

For example, if the trading strategy or analysis technique is applied to a chart with 500
bars, and the trading strategy or analysis technique sends one line to the printer for
every bar on the chart, the first printout will consist of 500 lines, with as many lines
per page as each page can hold. Then, as data is collected on a real-time/delayed basis,
one line will be sent to the printer at the close of each bar (one line per page each time
the bar closes). The same holds true when sending the information to a file, and for all
applications.

The Basic EasyLanguage Elements Output Methods 75

To send information to a file, the first expression included in parentheses of the
reserved word must be File along with the full path and name of the file enclosed in
quotation marks. For example, the following statement sends the EasyLanguage date,
time, and the close of every bar of a chart to a file instead of the printer:

Print(File(“c:\tradestati on\MyText.txt"),
Date, Tine, dose);

Important: Every time the trading signal, analysis technique, or function is
recalculated, or deleted and reapplied to the chart, the target file is overwritten. Also,
you cannot use a text string expression as the file name, it must be the actual path and
name of the file. Refer to the discussion of the reserved word FileAppend (below) for
information on appending to the file instead of overwriting it. When sending
information to the printer or a file, we recommend you use the FileAppend reserved
word instead of Print.

FileAppend

This reserved word creates and appends text string expressions to the specified file.
When sending information to the printer or a file, we recommend you use this reserved
word instead of Print.

Syntax:
Fi | eAppend(“<Fil eNane>", Text);

<FileName> is a text string expression representing the full path and name of the file
to write to, and Text is a text string expression to append to the file.

This reserved word accepts a text string expression for the file name, it will not delete
the target file when the trading strategy or analysis technique is applied to the chart (or
grid) or recalculated, it will not add a carriage return at the end of the expression sent
to the file, and finally, it only accepts text string expressions.

The fact that it will allow a text string expression as the file name enables users to
specify the file name to be written to through a variable and/or inputs. For example, the
following statements use the symbol name as a file name:

Variable: Txt(“ ");

Txt = “c:\My Docunents\” + GetSynbol Nanme + “.txt”;

Fil eAppend(Txt, “This will be sent to a file”);
This reserved word provides an alternative to the Print statement that does not delete

the target file every time the trading strategy or analysis technique is applied or
recalculated. This target file grows until it is manually edited or deleted.

76 Drawing Text on Price Charts CHAPTER 2

Note: You can use the reserved word FileDelete to delete the file and simulate the
behavior of the Print statement.

A carriage return is not added to the end of each expression sent; use the reserved word
NewLine whenever you want to include a carriage return. For example, the following
statement writes the text to the file, one line for each bar on the chart:

Fil eAppend(“c:\ My Docunments\text.txt”, “This text will be
sent to a file” + Newline);

Also, because this reserved word accepts only text string expressions, any dates or
numbers must be converted to text strings. For example, the following statement sends
the date and the closing price of every bar to the file:

Fi |l eAppend(“c:\ My Documents\text.txt”,
ELDat eToString(Date) + NunmfloStr(d ose, 2));

Notice that the date of the current bar is included, but as a parameter to the reserved
word ELDateToString, which converts an EasylLanguage date (YYYMMDD format) to
a text string expression. Likewise, the closing price is included as the parameter for the
NumToStr reserved, which converts numbers to text string expressions.

Drawing Text on Price Charts

Another way to display information on screen is to write text on a price chart. The first con-
cept you need to understand to start working with text is that each instance of a text drawing
object on a chart, called a text object, has a distinct identification (ID) number. All
EasylLanguage reserved words use the ID number to refer to a specific text object.

The Basic EasyLanguage Elements Drawing Text on Price Charts 77

To view the ID number for a text object, double-click the text object to display the Format
Text dialog box; the caption will contain the ID number, as shown in Figure 2-14.

“.I,:' TradeStation Chart - [DMGA) Omega Research Inc LAST-Daily
OMGA LAST-Daily 081 2!’1 999
\ I

| Ihl
| "
3 I ||l|

H=5.687 L=5.500 Y=100400

! ! i 16.000

14.000
13.000
12.000
11.000

| |
" | i i i i
I i i
i \

10.000

9.000

I|"| |I|' ||| ||“| IIII tI' |.”|I B l
l||' Iy

['nl' I ‘||.u,.|, y
i I : []

| | byl
eXt.ObeC] i Calor: . -
|
|
|

1

Haigr: [Lon -
‘ : : :

vaign: | ~
Feb Mar "apr Way un| han: | Top
4
_I Size: IMedium b2

™ Use as default

0K I Cancel Help

Figure 2-14. Formatting a text object on a chart

You can draw text objects using trading signals, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. When you use trading signals,
analysis techniques, or functions to draw text objects, they are added to a chart using the
default size, color, and alignment of the charting application. These attributes can be
modified using the EasyLanguage text object reserved words.

In order to place text on the chart, you need to define the specific point on the chart to
draw the text. You define the point by specifying a date and time (x-axis) and a price (y-
axis). This is the basic information that you manipulate when working with text objects;
additional information that you manipulate with the reserved words is the color, text
string, and alignment of the text.

All of the reserved words used to work with text objects return a numeric value repre-
senting the result of the operation they performed. If the reserved word was able to carry
out its task successfully, it will return a value of 0; however, if an error occurred, the re-
served word will return a numeric value representing the specific error. The following
table lists the possible return values of the text object reserved words.

Value Explanation

-2 The identification number used was invalid (i.e., there is no object on
the chart with this ID number).
-3 The data number (Data2, Data3, etc.) passed to the function was

invalid. There is no symbol (or data stream) on the chart with this data
number.

78 Drawing Text on Price Charts CHAPTER 2

Value Explanation

-4 The value passed to a SET function was invalid (for example, an invalid
color or line thickness was used).

-5 The beginning and ending points were the same (only when working
with trendlines). Can occur when you relocate a trendline or change
the begin/end points.

-6 The function was unable to load the default values for the tool.

-7 Unable to add the object. Possibly due to an out of memory condition.
Your system resources have been taxed and it cannot process the
request.

-8 Invalid pointer.Your system resources have been taxed and it cannot

process the request.

-9 Previous failure.Once an object returns an error code, no additional
objects can be created by the trading signal, analysis technique, or
function that generated the error.

-10 Too many trendline objects on the chart.
-11 Too many text objects on the chart.

Whenever any of the text object reserved words is unable to perform its task and returns
an error, the trading signal, analysis technique, function will stop manipulating all text
objects from that bar forward. The trading signal, analysis technique, or function itself
will continue to be evaluated, but all statements that include text object reserved words
will return a value of -9 (Previous failure error) and will not perform the intended action.

Also, it is very important that you store the ID number of the text objects drawn in the
price chart; if you have any intention of modifying or referring to this object in any way,
you need the ID number. If you are adding multiple text objects to the price chart, we
recommended you use arrays to store their ID numbers (refer to “Understanding Arrays”
on page 45 for information on using arrays).

Text Object Reserved Words

Following is the list of all the text object reserved words available in EasyLanguage.

Text_New

This reserved word adds the specified text string to a price chart, at the specified bar and
price value. It returns a numeric expression corresponding to the ID number of the text
object added to the chart. If you want to modify the text object in any way, it is very
important that you capture and keep this number; the ID number is the only way of
referencing a specific text object.

Syntax:
Val uel = Text New(BarDate, BarTine, Price, “MText")

The Basic EasyLanguage Elements Drawing Text on Price Charts 79

Parameters:)))))
BarDate and BarTime are numeric expressions corresponding to the date and time,

respectively, for the bar on which you want to anchor the text object, Price is a numeric
expression representing the price value at which to anchor the text object, and MyText is
the text string expression to add to the price chart.

All text objects are anchored at a specific bar and price value on the price chart. You need
to provide this information to the Text_New reserved word in order for the trading signal,
analysis technique, or function to add a text object to the chart.

Notes:
Valuel is any numeric variable or array, and holds the ID number for the new text object.

Text objects are added to the chart using the default color, and vertical and horizontal
alignment of the charting application. As you will see, you can change any of these
properties using the reserved words listed in this section.

Example:
For example, the following statements add a text string “Key” to a price chart every time

there is a key reversal pattern:
Variable: 1D(-1);

If Low < Low 1] AND Cl ose > High[1] Then
ID = Text _New(Date, Time, Low, “Key”);

Text_Delete

This reserved word removes from the chart the text object with the ID number that matches
the one specified. It is important to remember that if an invalid ID number is used, the re-
served word will return a value of -2 and no additional operations will be performed on any
text objects by the trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = Text Del et e(Text _I D)

Parameters:
Text_ID is a numeric expression representing the identification number of the text object to
delete.

Notes:
Valuel is any numeric variable or array. You must assign the text object reserved word to

anumeric variable or array so that you can determine whether or not the reserved word per-
formed its operation successfully.

Example:

The following statements write the text string “Key” wherever there is a key reversal pat-
tern on the price chart, and delete old text from the chart as new key reversals are found:

80 Drawing Text on Price Charts CHAPTER 2

Vari ables: ddKeylD(-1), 1D(-1);

If Low < Low 1] AND Close > High[1l] Then Begin
A dKeyl D = | D,
ID = Text _New(Date, Time, Low, “Key”);
If AdKeylD <> -1 Then
Val uel = Text_Del et e(A dKeyl D) ;
End;

In the above example, we declare two variables to hold the Text IDs for the existing
and new text objects. When we find a new key reversal, we assign the ID number of
the current text object to the variable OldKeylID. We then create a new text object at
the new key reversal. Finally, we delete the text object with the ID number held in the
variable OldKeyID. We first check for OldKeyID to be -1, because it will be -1 until
we draw the second text object on the chart, and we don’t want to reference a text object
that doesn’t exist.

Text_GetColor

This reserved word returns a numeric expression corresponding to the color assigned to a
specified text object. It is important to remember that if an invalid ID number is used, it will
return a value of -2 and no additional operations will be performed on any text objects by
the trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = Text Get Col or(Text | D)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object for which to
obtain the color.

Notes:

Valuel is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

For a list of the supported colors, refer to Appendix B of this book.

Example:

For efample, the following statements write the text string “Key” wherever there is a key
reversal pattern on the price chart, and compares the color of the text object with the back-
ground of the price chart. If the colors match, the indicator draws the text string using a dif-
ferent color:

Variables: ID(-1), TxtCol or(0);
If Low < Low 1] AND O ose > High[1l] Then Begin

ID = Text _New(Date, Tinme, Low, “Key”);
Txt Col or = Text _GetCol or(1D);

The Basic EasyLanguage Elements Drawing Text on Price Charts 81

I f TxtCol or = GetBackG oundCol or Then
Val uel = Text_SetColor (1D, TxtColor + 1);
End;

In the above example, we first declare two variables, one to hold the text object ID
number, the second to hold the number representing the color of the text object. Then,
when we find a key reversal, we draw the text object at the low of the bar. We also
obtain the color of the text object, and then compare the text object color to the color
of the chart background. If it is the same, we change the color of the text object (add
one to the existing color number).

Text_GetDate

This reserved word returns a numeric expression corresponding to the EasylLanguage date
of the bar on which the specified text object is drawn. It is important to remember that if an
invalid ID number is used, it will return a value of -2 and no additional operations will be
performed on any text objects by the trading signal, analysis technique, or function that
generated the error.

Syntax:
Val uel = Text GCet Dat e(Text _I D)

Parameters:
Text_ID is a numeric expression representing the 1D number of the text object whose date

you want to obtain.

Notes:
Valuel can be any numeric variable or array. The EasyLanguage date obtained is assigned

to this variable or array.

Example:
The following statement assigns to the variable Valuel the EasylLanguage date of the bar

where the text object with the ID number 5 is drawn:

Val uel = Text GCetDate(5);

Text_GetFirst

You can draw text objects using trading signals, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. EasylL anguage enables you to
search for text objects based on how they were created.

This reserved word returns the ID number of the oldest text object on the price chart (the
first drawn). It is important to remember that if an invalid ID number is used, the reserved
word will return a value of -2 and no additional operations will be performed on any text
objects by the trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = Text _Get First(Num

82 Drawing Text on Price Charts CHAPTER 2

Parameters:
Num is a numeric expression representing the origin type of the text object. The possible

values for num are:

Value of num Description

1 Text created by a trading signal, analysis technique, or func-
tion
Text created by the text drawing object tool only

Text created by either the text drawing object tool or a trading
signal, analysis technique, or function

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Valuel is any numeric variable or array that holds the ID number of the desired text object.

Example:
The following statements delete the oldest text object on a price chart drawn by a trading

signal, analysis technique, or function:

Text _GetFirst(1);
Text _Del et e(Val uel);

Val uel
Val ue2

Note: When the oldest (first) text object is deleted, the next oldest (second) text object
becomes the first drawn on the price chart, and so on.

Text_GetHStyle

A text object is always anchored to a specific bar. Because of this, there are three
possible ways to horizontally align a text object: to the left of the bar where it is drawn,
to the right, or centered. This reserved word returns a numeric value indicating the
horizontal alignment of the text object.

Syntax:
Val uel = Text Get HStyl e(Text _I D)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose

horizontal alignment value you want to obtain.

Notes:
Valuel is any numeric variable or array that holds the horizontal alignment of the

desired text object. The reserved word can return one of these three values:

The Basic EasyLanguage Elements Drawing Text on Price Charts 83

Value Placement
0 Left
1 Right
2 Centered
Example:

The following instructions obtain the horizontal alignment of text object #10 and align
it to right of the bar:

If Text GetHStyle(10) <> 1 Then
Val uel = Text_ SetHStyle(1);

Text_GetNext

You can draw text objects using trading signals, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. EasylL anguage enables you to
search for text objects based on how they were created.

The charting application stores the chronological order of all text objects added to a chart,
and this information is made available to EasyLanguage. This reserved word returns the ID
number of the text object on the price chart added immediately after the text object
specified. You can use this reserved word together with the reserved word Text_GetFirst
to traverse all the text objects in a price chart.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects by
the trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = Text Get Next (Text I D, Num

Parameters:
Text_ID is a numeric expression representing the ID number of the text object, and

Num is a numeric expression representing the origin type of the text object. The
possible values for Num are:

Value of num Description

1 Text created by a trading signal, analysis technique, or function
2 Text created by the text drawing object tool only
3 Text created by either the text drawing object tool or a trading sig-

nal, analysis technique, or function

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

84

Drawing Text on Price Charts CHAPTER 2

Notes:
Valuel is any numeric variable or array, and holds the ID number of the text object added
after the text object specified.

Example:
The following statements set the color of all text objects in the chart to yellow:

Val uel = Text GetFirst(3);

Wil e Valuel <> -2 Begin
Val ue2 = Text_Set Col or (Val uel, Yellow);
Val uel = Text Get Next (Val uel, 3);

End;

In the above example, we obtain the ID number for the first text object drawn on the
chart. Then, we set its color to yellow. We then obtain the ID number of the next text
object and set that to yellow. This loop continues until Text_GetNext returns -2
indicating that there are no more text objects on the chart. Keep in mind that once the
trading signal, analysis technique, or function returns -2, it cannot draw any more text
objects on the chart. In this situation, you may want to use one trading signal, analysis
technique, or function to draw the text objects, and another to change their color.

Text_GetString

This reserved word returns the text string expression corresponding to the text object
specified. It is important to remember that if an invalid ID number is used, the reserved
word will return a value of -2 and no additional operations will be performed on any text
objects by the trading signal, analysis technique, or function that generated the error.

Syntax:
MyText = Text_ Get String(Text _ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose text
string expression you want to obtain.

Notes:
MyText is any text variable or array, and holds the text string expression corresponding to
the text object with the ID number specified.

Example:
The following statements print the contents of text object #5 to the Debug window:

Variabl e: MyText (“ 7) ;
Print(Text_GetString(5));
Text_GetTime

This reserved word returns a numeric expression corresponding to the EasyLanguage time
of the bar on which the specified text object is anchored. It is important to remember that

The Basic EasyLanguage Elements Drawing Text on Price Charts 85

ifan invalid ID number is used, the reserved word will return a value of -2 and no additional
operations will be performed on any text objects by the trading signal, analysis technique,
or function that generated the error.

Syntax:
Val uel = Text Get Ti ne(Text _I D)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object for which
you want to obtain the time.

Notes:
Valuel is any numeric variable or array, and holds the time of the specified text object.

Example:
The following statement assigns the EasyLanguage time of the bar where the text object
with the ID number 5 is drawn to the variable Valuel :

Val uel = Text GetTi ne(5);

Text_GetValue

Text objects are drawn at a specific price value on the price chart. This reserved word
returns a numeric value corresponding to the price at which the specified text object is
anchored. It is important to remember that if an invalid ID number is used, the reserved
word will return a value of -2 and no additional operations will be performed on any text
objects by the trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = Text Get Val ue(Text | D)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose
price value you want to obtain.

Notes:
Valuel is any numeric variable or array, and holds the price value at which the
specified object is anchored.

Example:
For example, the following statement can be used to print to the Debug window the
value at which text object 10 is drawn:

Print(Text_ GetValue(10)) ;

Text_GetVStyle

A text object is always anchored at a specific price value on a price chart, and there are three
possible ways to align the text object vertically: the top being at the specified price, the
bottom being at the specified price, or centered. This reserved word returns a numeric value
representing the vertical alignment of the specified text object.

86 Drawing Text on Price Charts CHAPTER 2

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects by
the trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = Text Get VStyl e(Text _I D)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose

vertical alignment you want to obtain.

Notes:
Valuel can be any numeric variable or array, and holds the price value at which the

specified object is anchored.

This reserved word returns one of three values:

Value Placement
0 Top
1 Bottom
2 Centered
Example:
The following instructions obtain the vertical alignment of text object #10 and set it to Bot-
tom:

If Text_GCetHStyl e(10) <> 1 Then
Val uel = Text _SetVStyle(1);

Text_SetColor

This reserved word sets the color of the specified text object.

Syntax:
Val uel = Text Set Col or (Text _I D, Col or)

Parameters: .)])
Text_ID is a numeric expression representing the ID number of the text object, and Color
is an EasyLanguage color or its numeric equivalent.

For a list of the available colors, refer to Appendix B of this book.

Notes:

Valuel is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects
by the trading signal, analysis technique, or function that generated the error.

The Basic EasyLanguage Elements Drawing Text on Price Charts 87

Example:

The f(?llowing indicator displays the word “Key” wherever there is a key reversal pattern
on the price chart, and compares the color of the text object with the background of the price
chart. If the colors match, the indicator sets the text object to a different color (it adds 1 to
the current color):

Variables: ID(-1), TxtColor(0);
If Low < Low 1] AND O ose > High[1l] Then Begin
ID = Text _New(Date, Time, Low, “Key”);
Txt Col or = Text _Get Col or (1D);
I f TxtColor = GetBackgroundCol or Then
Val uel = Text_SetColor (1D, TxtColor + 1);
End;

Text_SetLocation

All text objects are anchored at a specific bar and price value on the price chart. This
reserved word modifies the point at which the specified text object is anchored.

Syntax:
Val uel = Text _SetLocation(Text |ID, BarDate, BarTine, Price)

Parameters:

Text_ID is a numeric expression representing the ID number of the text object to modify;
BarDate and BarTime are numeric expressions representing the new Easyl anguage date

and time, respectively, at which to anchor the text object; and Price is the new price value
at which to anchor the text object.

Notes:

Valuel is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects
by the trading signal, analysis technique, or function that generated the error.

We recommend that you change the location of the text object rather than delete the
text object and draw a new one. Relocating an existing object is faster and generates
fewer ID numbers to keep track of.

Example:

These statements display the name of the symbol above the first bar in the chart (after Max-
BarsBack) and then change the location of the text to always display it on the last bar of the
chart:

| f BarNunber = 1 Then
Val uel = Text _New(Date, Tinme, Hi gh *1.01, Get Synbol Nane);
Val ue2 = Text SetLocation(Valuel, Date, Tine, High * 1.01);

88

Drawing Text on Price Charts CHAPTER 2

Text_SetString

This reserved word changes the text string expression of the specified text object.

Syntax:
Val uel = Text _SetString(Text ID, “MText”)

Parameters:

Text_ID is a numeric expression representing the ID number of the text object whose text
string expression you want to modify, and MyText is the new text string expression for the
text object.

Notes:

Valuel is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects
by the trading signal, analysis technique, or function that generated the error.

We recommend that you change the text string expression of the text object rather than
delete the text object and draw a new one. Changing an existing text object is faster and
generates fewer ID numbers to keep track of.

Example:

These statements display the closing price of the symbol above the first bar in the chart (af-
ter MaxBarsBack) and then change the location of the text and the text to always display
the closing price of the last bar on the chart:

I f BarNunber = 1 Then
Val uel=Text New(Dat e, Ti ne, Hi gh*1. 01, NunifoStri ng(Cl ose, 2));

Val ue2 = Text _SetLocation(Valuel, Date, Time, High * 1.01);
Val ue3 Text _Set String(Val uel, NuniToString(d ose, 2));

Text_SetStyle

A text object is always anchored at a specific bar and price value. There are three horizontal
alignment settings: to the left of the bar where it is drawn, to the right, or centered. Also,

there are three vertical alignment settings: the top being at the specified price, the bottom
being at the specified price, or centered.

This reserved word changes the horizontal and vertical alignment of the specified text ob-
ject.

Syntax:
Val uel = Text _Set Styl e(Text I D, Hval, Wal)

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 89

Parameters:

Text_ID is a numeric expression representing the ID number of the text object whose
alignment you want to change, and HVal and VVal are numeric expressions
representing the horizontal and vertical alignment of the text object, respectively.

You can use one of three horizontal alignment values (HVal):

Value Placement
0 Left

1 Right

2 Centered

You can use one of three vertical alignment values (VVal):

Value Placement
0 Top

1 Bottom

2 Centered

If there are no text objects with the ID number you specify, or if the operation fails in
any way, this reserved word will return a numeric expression corresponding to one of
the EasyLanguage drawing objects error codes, and no additional operations will be
performed on any text objects by the trading signal, analysis technique, or function that
generated the error.

Notes:

Valuel is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

Example:
The following statement changes the alignment of text object #3 so it is right aligned
and sits above the specified price:

Val uel = Text _SetStyle(3, 1, 1) ;

Drawing Trendlines on Price Charts

You can draw and manipulate trendlines on a price chart from a trading signal, analysis
technique (indicators and studies) or functions. The very first concept you need to under-
stand to start working with trendlines is that each instance of a trendline drawing object on
a chart has a distinct identification (ID) number. All EasyLanguage commands use the ID
number to refer to a specific trendline.

To view the ID number for a trendline, double-click the trendline to display the Format
Trendline dialog box; the caption will contain the ID number, as shown in Figure 2-15.

90 Drawing Trendlines on Price Charts CHAPTER 2

¥ TradeStation Chart - [MSFT) Microsoft Corp LAST-D aily

MEFT LAST-Daily 0817718583 C=830837 - 375 -0.44% H=85500 L=83750
|

N

IJM*l llh

il i—
| M‘UU’/ N

hlar Apr May Jun Jul ™ Use as default

Ok I Cancel Help

Figure 2-15. Formatting a trendline on a chart

Trendlines are added to a chart using the default properties (i.e., color, thickness, line
style, extension status, and alert status) of the charting application. You can modify
these attributes using the trendline-related reserved words.

To place a trendline on the chart, you need to define its start and end points. Each point
is defined using a date and time (x axis) and a price value (y axis). This is the basic
information that you manipulate when working with trendlines; additional information
that you manipulate using reserved words includes the color, thickness, and line style,
as well as extension and alert status.

All of the reserved words used to work with trendlines return a numeric value
representing the result of the operation they performed. If the reserved word was able
to carry out its task successfully, it will return a value of 0; however, if an error
occurred, the reserved word returns a numeric value representing the specific error.
The following table lists the possible return values of the trendline reserved words:

Value Explanation

-2 The identification number used was invalid (i.e., there is no
object on the chart with this ID number).

-3 The data number (Data2, Data3, etc.) passed to the function

was invalid. There is no symbol (or data stream) on the chart
with this data number.

-4 The value passed to a SET function was invalid (for example,
an invalid color or line thickness was used).

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 91

Value Explanation
-5 The beginning and ending points were the same (only when

working with trendlines). Can occur when you relocate a
trendline or change the begin/end points.

-6 The function was unable to load the default values for the tool.

-7 Unable to add the object. Possibly due to an out of memory
condition. Your system resources have been taxed and it
cannot process the request.

-8 Invalid pointer.Your system resources have been taxed and it
cannot process the request.

-9 Previous failure.Once an object returns an error code, no
additional objects can be created by the trading signal, anal-
ysis technique, or function that generated the error.

-10 Too many trendline objects on the chart.
-11 Too many text objects on the chart.

Whenever any of the trendline reserved words is unable to perform its task and returns
an error, the trading signal, analysis technique, or function will stop manipulating all
trendlines from that bar forward. The trading signal, analysis technique, or function itself
will continue to be evaluated, but all statements that include trendline reserved words
will return a value of -9 (Previous failure error) and will not perform the intended
action.

If you have any intention of modifying or referring to the trendline drawn in the price
chart in any way, you must store the ID number of the trendline. If you are adding
multiple trendlines to the price chart, we recommended you use arrays to store their ID
numbers.

Trendline Reserved Words
Following is a list of all the trendline reserved words available in EasyLanguage.

TL_New

This reserved word adds a trendline with the specified starting and ending points to a
price chart. It returns a numeric expression corresponding to the 1D number of the
trendline added to the chart. If you want to modify the trendline in any way, it is very
important that you capture and keep the number; the ID number is the only way of
referencing a specific trendline.

Syntax:
Valuel = TL_New(i BarDate, iBarTinme, iPrice, eBarDate,

eBarTi me, ePrice)

92

Drawing Trendlines on Price Charts CHAPTER 2

Parameters:) o)))
iBarDate, iBarTime, and iPrice are numeric expressions corresponding to the date,

time, and price, respectively, of the starting point; eBarDate, eBarTime, and ePrice are
numeric expressions corresponding to the date, time, and price, respectively, of the end
point of the trendline.

Notes:
Valuel is any numeric variable or array, and holds the ID number for the new trendline.

A minimum of two different points are needed in order to draw any trendline on a price
chart, and this is the information that you need to provide to the TL_New reserved word
to draw a trendline on the price chart from a trading signal, analysis technique, or
function.

Trendlines are added to the chart using the default properties set in the charting
application. As you will see, you can change any of these properties using the reserved
words listed in this section.

For example, the following statements add a trendline to the price chart (and extend it to
the right) every time there is a key reversal pattern:

Variable: 1D(-1);

If Low < Low 1] AND O ose > High[1l] Then Begin
ID = TL_New(Date[1], Tinme[l], Low, Date, Tinme, Low);
Val uel = TL_Set Ext Right (I D, True);

End;

TL_Delete

This reserved word deletes the specified trendline from the price chart.

Syntax:
Val uel = TL_Del ete(TI _I D)

Paramgters:
TI_ID is a numeric expression representing the ID number of the trendline to delete.

Notes:

Valuelis any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal and extend it to the

right, and in addition, delete the old trendline from the chart when a new key reversal is
found:

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 93

Vari ables: ddKeyl D(-1), 1D(-1);

If Low < Low 1] AND O ose > High[1l] Then Begin
A dKeyl D = | D,
ID = TL_New(Date[1], Time[l], Low, Date, Tinme, Low);
Val uel = TL_Set Ext Right (I D, True);
If AdKeylD <> -1 Then
Val uel = TL_Del et e(A dKeyl D);
End;

In the above example, first we declare two variables, one to hold the ID number of the
old trendline, and one to hold the ID number for the new trendline. When we find a new
key reversal, we store the existing trendline’s ID number in OldKeyID, and create a
new trendline at the low of the key reversal bar and extend it to the right. Then, we
delete the old trendline. Before deleting the old trendline, we first check to make sure
the ID number in OldKeyID is not -1, which it will be until the second trendline is
drawn. This way, we don’t reference an invalid ID number.

TL_GetAlert

This reserved word obtains the alert setting for the specified trendline.

Syntax:
Valuel = TL_GetAlert (Tl _I D)

Parameters:))))
TI_ID is a numeric expression representing the ID number of the trendline whose alert
status you want to obtain.

Notes:
Valuel can be any numeric variable or array, and holds the alert status. This reserved word
returns one of these three values:

Value Description

0 None - no alert enabled
1 Breakout Intrabar

2 Breakout on Close

An alert set to Breakout on Close is triggered when on the previous bar, the close of the
symbol was lower than the trendline, and on the current bar, the close is higher than the
trendline. This type of alert is only evaluated once the bar is closed.

An alert set to Breakout Intrabar is triggered if the high crosses over the trendline or
if the low crosses under the trendline. This alert is triggered at the moment the trendline
is broken.

94 Drawing Trendlines on Price Charts CHAPTER 2

Example:
The following statement checks the alert status for trendline #10 and if it is not set to

Breakout on Close, it enables it and sets it to Breakout on Close:

If TL_GetAlert(10) <> 2 Then
Valuel = TL_Set Al ert (10, 2);

TL_GetBeginDate

This reserved word returns the date of the starting point of the trendline. The start point
is the one with the earlier date. If the trendline is vertical, the lower of the two points
is considered to be the starting point.

Syntax:
Val uel = TL_Get Begi nDat e(Tl _I D)

Parameters: _ _) _
TI_ID is a numeric expression representing the ID number of the trendline whose start date

you want to obtain.

Notes:
Valuelis any numeric variable or array, and holds the date of the starting point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement assigns the Easyl anguage date of the bar used as the start

point for the trendline with the ID number 5 to the variable Valuel:

Val uel = TL_Get Begi nDat e(5) ;

TL_GetBeginTime

This reserved word returns the time of the starting point of the trendline. The start point
is the one with the earlier date. If the trendline is vertical, the lower of the two points
is considered to be the starting point.

Syntax:
Val uel = TL_Get Begi nTi ne(Tl _I D)

Parameters:))))
TI_ID is a numeric expression representing the ID number of the trendline whose

starting time you want to obtain.

Notes:
Valuelis any numeric variable or array, and holds the date of the starting point.

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 95

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasylL anguage time of the bar used as the start point

for the trendline with the ID number 5 to the variable Valuel:

Val uel = TL_Get Begi nTi ne(5);

TL_GetBeginVal

This reserved word returns a numeric expression corresponding to the price value used
as the starting point of the trendline. The starting point of the trendline is the one with
the earlier date; if the trendline is vertical, the lower of the two points is considered to
be the starting point.

Syntax:
Val uel = TL_Get Begi nVal (Tl _I D)

Parameters:)) .)
TI_ID is a numeric expression representing the ID number of the trendline whose

starting price value you want to obtain.

Notes:
Valuelis any numeric variable or array, and holds the price value of the starting point

of the trendline.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement assigns the price value of the starting point of trendline #5 to the
variable Valuel:

Val uel = TL_Get Begi nVal (5);

TL_GetColor

This reserved word returns a numeric expression corresponding to the color assigned to the
specified trendline.

Syntax:
Val uel = TL_Get Col or (TI _I D)

Param_eters:
TI_ID is a numeric expression representing the ID number of the trendline whose color you

want to obtain.

96 Drawing Trendlines on Price Charts CHAPTER 2

Notes:
Valuelis any numeric variable or array, and holds the EasylLanguage color or numeric

equivalent of the specified trendline.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

For a list of supported colors, refer to Appendix B of this book.

Example:
The following statements draw a trendline at the low of each key reversal pattern. If the col-

or of the trendline matches the background color of the chart, the indicator sets the trendline
to a different color (it adds 1 to the current color):

Variable: 1D(-1);

If Low < Low 1] AND O ose > High[1l] Then Begin
ID = TL_New(Date[1], Tinme[l], Low, Date, Tinme, Low);
Val uel = TL_Get Col or (I D);

I f Valuel = Get BackG oundCol or Then
Value2 = TL_Set Col or (I D, Valuel + 1);
End;

TL_GetEndDate

This reserved word returns the date of the ending point of the trendline. The ending
point of the trendline is the one with the later date; if the trendline is vertical, the higher
of the two points is considered to be the ending point.

Syntax:
Val uel = TL_Get EndDat e(Tl _I D)

Parameters:))))
TI_ID is a numeric expression representing the ID number of the trendline whose end date

you want to obtain.

Notes:
Valuelis any numeric variable or array, and holds the date of the starting point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasyLanguage date of the bar used as the end point
for the trendline with the ID number 5 to the variable Valuel:

Val uel = TL_Get EndDat e(5) ;

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 97

TL_GetEndTime

This reserved word returns the time of the ending point of the trendline. The ending
point of the trendline is the one with the later date; if the trendline is vertical, the higher
of the two points is considered to be the ending point.

Syntax:
Val uel = TL_Get EndTi me(Tl _I D)

Parameters:
TI_ID is a numeric expression representing the ID number of the trendline whose
ending time you want to obtain.

Notes:
Valuelis any numeric variable or array, and holds the date of the ending point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasyLanguage time of the bar used as the end point for
the trendline with the ID number 5 to the variable Valuel:

Val uel = TL_Get EndTi me(5);

TL_GetEndVal

This reserved word returns a numeric expression corresponding to the price value used
as the ending point of the trendline. The ending point of the trendline is the one with
the later date; if the trendline is vertical, the higher of the two points is considered to
be the ending point.

Syntax:
Val uel = TL_Get EndVal (Tl _I D)

Parame_ters:
TI1_ID is a numeric expression representing the ID number of the trendline whose
ending price value you want to obtain.

Notes:
Valuelis any numeric variable or array, and holds the price value of the ending point
of the trendline.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

98 Drawing Trendlines on Price Charts CHAPTER 2

Example:
The following statement assigns the price value of the ending point of trendline #5 to the
variable Valuel:

Val uel = TL_Get EndVal (5);
TL_GetExtLeft

Trendlines can be extended to the right or left. This reserved word returns a value of True
or False. If the trendline is extended to the left, it will return a value of True; otherwise, it
will return a value of False.

Syntax:
Conditionl = TL_Get ExtLeft (Tl _I D)

Parameters: _ _) _)
TI_ID is a numeric expression representing the ID number of the trendline whose extension
status you want to obtain.

Notes:

Conditionl can be any true/false variable or array, and holds the true/false value determin-
ing whether or not the trendline is extended. If an invalid ID number is used, the value False
is returned.

Example:
The following instructions extend the trendline #10 to the left if it is not already extended:

If TL_Get ExtlLeft(10) = Fal se Then
Val uel = TL_Set Ext Left (10, True);

TL_GetExtRight

Trendlines can be extended to the right or left. This reserved word returns a value of True
or False. If the trendline is extended to the right, it will return a value of True; otherwise, it
will return a value of False.

Syntax:
Conditionl = TL _GetExtRight (Tl _ID);

Parameters:)]))]
TI_ID is a numeric expression representing the ID number of the trendline whose extension
status you want to obtain.

Notes:

Conditionl can be any true/false variable or array, and holds the true/false value determin-
ing whether or not the trendline is extended. If an invalid ID number is used, the value False
is returned.

Example:
The following instructions extend the trendline #10 to the right if it is not already extended:

If TL_Get Ext Ri ght (10) = Fal se Then
Val uel = TL_Set Ext Ri ght (10, True);

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 99

TL_GetFirst

You can draw trendlines using trading signals, analysis techniques (indicators and studies)
or functions, or by using the drawing object tool. EasyLanguage enables you to search for
trendlines based on how and in what order they were created.

The charting application stores the chronological order of all trendlines added to a chart,
and this information is made available to EasyLanguage. This reserved word returns the ID
number of the first trendline added to the price chart (by a trading signal, analysis
technique, or function, or by a drawing tool, or by either).

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines by the
trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = TL_Get First (Num

Parameters: _ _ o))
Num is a numeric expression representing the origin type of the trendline. The possible
values for Num are:

Value of Num Description

1 Trendline created by a trading signal, analysis technique, or
function

Trendline created by the trendline drawing object tool only
Trendline created by either the trendline drawing object tool
or a trading signal, analysis technique, or function

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Valuel is any numeric variable or array that holds the ID number of the desired trendline.

Example:
The following statements delete the oldest trendline on a price chart drawn by a trading

signal, analysis technique, or function:

Valuel = TL_GetFirst(1);
Val ue2 = TL_Del et e(Val uel);

Note: When the oldest (first) trendline is deleted, the next oldest (second) trendline
becomes the first drawn on the price chart, and so on.

100 Drawing Trendlines on Price Charts CHAPTER 2

TL_GetNext

You can draw trendlines using trading signals, analysis techniques (indicators or studies),
or functions, or by using the drawing object tool. EasyLanguage enables you to search for
trendlines based on how they were created.

The charting application stores the chronological order of all trendlines added to a chart,
and this information is made available to EasyLanguage. This reserved word returns the ID
number of the trendline on the price chart added immediately after the trendline specified.
You can use this reserved word together with the reserved word TL_GetFirst to traverse all
the trendlines in a price chart.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines by the
trading signal, analysis technique, or function that generated the error.

Syntax:
Val uel = TL_Get Next (TL_I D, Num

Parameters:

TL_ID is a numeric expression representing the ID number of the trendline, and Num
is @ numeric expression representing the origin type of the trendline. The possible
values for Num are:

Value of Num Description

1 Trendline created by a trading signal, analysis technique, or
function

Trendline created by the trendline drawing object tool only

Trendline created by either the trendline drawing object tool
or a trading signal, analysis technique, or function

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Valuel is any numeric variable or array, and holds the ID number of the trendline added
after the trendline specified.

Example:
The following statements set the color of all trendlines in the chart to yellow:

Valuel = TL_GetFirst(3);

Wil e Val uel <> -2 Begin
Val ue2 = TL_Set Col or (Val uel, Yell ow);
Val uel = TL_Get Next (Val uel, 3);

End;

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 101

In the above example, we obtain the ID number for the first trendline drawn on the
chart. Then, we set its color to yellow. We then obtain the ID number of the next
trendline and set that to yellow. This loop continues until TL_GetNext returns -2
indicating that there are no more trendlines on the chart. Keep in mind that once the
trading signal, analysis technique, or function returns -2, it cannot draw any more
trendline on the chart. In this situation, you may want to use one trading signal, analysis
technique, or function to draw the trendlines, and another to change their color.

TL_GetSize

This reserved word returns a numeric expression representing the thickness of the
trendline, where 0 is the thinnest, and 6 is the thickest.

Syntax:
Valuel = TL_Get Si ze(Tl _I D)

Parameters:)))))
TI_ID is a numeric expression representing the ID number of the trendline whose thickness

setting you want to obtain.

Notes:
Valuel can be any numeric variable or array, and holds the thickness setting.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines by the
trading signal, analysis technique, or function that generated the error.

Example:
The following statement assigns the thickness of trendline #10 to the variable Valuel:

Val uel = TL_Get Si ze(10);

TL_GetStyle

This reserved word returns a numeric expression representing the line style used for the
specified trendline.

Syntax:
Valuel = TL_Get Styl e(TI _I D)

Parameters: _ _) _)
TI_ID is a numeric expression representing the ID number of the trendline whose line style

you want to obtain.

102

Drawing Trendlines on Price Charts CHAPTER 2

Notes:
Valuelis any numeric variable or array, and holds the numeric expression representing

the line style of the specified trendline. Following are the possible return values and
their numeric equivalents:

Tool_Solid 1
— — — | Tool_Dashed 2
................ Tool_Dotted 3
- —- Tool_Dashed2 4
—m—em—ee—e- Tool_Dashed3 5

You can use either the numbers or the EasylLanguage reserved word.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following IF-THEN statement verifies that a trendline is solid before executing the

EasyLanguage instruction:

If TL _GetStyle(10) = Tool Solid Then
{BasyLanguage instruction } ;

TL_GetValue

This reserved word returns a numeric expression corresponding to the value of a trendline
at a specific bar. It is important to remember that this reserved word returns a value even if
the trendline is not shown on or projected through the bar specified. For example, if a

trendline is drawn from December 1st to January 5th, and the following statement is used:

Val uel = TL_Get Val ue(10, 990203, 1400);

Even though the date specified is in February, the TL_GetValue reserved word will return
the trendline value as if the trendline were extended to that particular bar (along the same
slope).

Syntax:
Valuel = TL_GetVal ue(Tl _ID, TLDate, TLTi ne)

Parameters:)) _))
TI_ID is a numeric expression representing the ID number of the trendline whose price

value you want to obtain. TLDate and TLTime are the date and time, respectively, of the bar
for which you want to obtain the trendline’s value.

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 103

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement triggers an alert when the close crosses over trendline #10:

If Close Crosses Over TL_GetVal ue(10, Date, Time) Then
Alert(“Trendline is broken”);

TL_SetAlert

This reserved word changes the alert status for a trendline.

Syntax:
Valuel = TL_SetAlert (Tl _ID, AlertVal)

Parameters:

TI_ID is a numeric expression representing the identification number of the trendline, and
AlertVal is a numeric expression representing the alert setting for the trendline. You can
specify one of these three values:

Value Description

0 None - no alert enabled
1 Breakout Intrabar

2 Breakout on Close

An alert set to Breakout on Close is triggered when on the previous bar, the close of the
symbol was lower than the trendline, and on the current bar, the close is higher than the
trendline. This type of alert is only evaluated once the bar is closed.

An alert set to Breakout Intrabar is triggered if the high crosses over the trendline or
if the low crosses under the trendline. This alert is triggered at the moment the trendline
is broken.

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement checks the alert status for trendline #10 and if it is not set to Brea-

kout on Close, it enables it and sets it to Breakout on Close:

If TL _GetAlert(10) <> 2 Then
Valuel = TL_Set Al ert (10, 2);

104 Drawing Trendlines on Price Charts CHAPTER 2

TL_SetBegin

This reserved word changes the start point of the specified trendline. It is very important to
know which is the starting point and which is the ending point for a trendline; the start point
has an earlier date and time. If the trendline is vertical, the point with the lower price value
is considered the starting point.

However, if the starting point of a trendline is changed (by EasyLanguage or by using the
drawing tool) such that it has a later date than the ending point, the starting point then
becomes the old ending point of the trendline.

Syntax:
Valuel = TL_SetBegin(TlI _ID, iDate, iTime, iVal)

Parameters: _ _) S _
TI_ID is a numeric expression representing the identification number of the trendline, and

iDate, iTime, and iVal are numeric expressions representing the trendline’s starting point
date, time, and value respectively.

Notes:

Valuelis any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

This reserved word returns zero (0) when it successfully changes the beginning point of a
trendline, and it returns one of the EasylLanguage drawing object errors when it fails. For
example, if the start point of the trendline is set to exactly the same value as the ending
point, the reserved word will return the error -5. Also, it is important to remember that if an
invalid ID number is used, the reserved word will return a value of -2, and no additional
operations will be performed on any trendlines by the trading signal, analysis technique, or
function that generated the error.

Example:
The following statement sets the start point of trendline #5 to the high price 10 bars ago:

Val uel = TL_Set Begi n(5, Date[10], Time[10], Hi gh[10]);

TL_SetColor

This reserved word changes the color of the specified trendline.

Syntax:
Val uel = TL_Set Col or (TI _I D, Col or)

Parameters:)]))
TI_ID is a numeric expression representing the ID number of the trendline whose color you

want to change, and Color is one of the EasyLanguage supported colors.

For a list of supported colors, refer to Appendix B of this book.

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 105

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal, and compare the

color of the trendline with the background of the chart. If the colors match, the
EasyLanguage instructions add 1 to the color, and set the trendline to this new color:

Variables: ID(-1), TLCol or(0);

If Low < Low 1] AND O ose > High[1l] Then Begin
ID = TL_New(Date[1], Tinme[l], Low, Date, Tinme, Low);
TLColor = TL_GetColor(I1D);
I f TLCol or = Get BackgroundCol or Then
Val uel = TL_Set Col or (I D, Txt Col or+1);
End;

TL_SetEnd

This reserved word changes the end point of the specified trendline. It is very important to
know which is the starting point and which is the ending point for a trendline; the end point
has a later date and time. If the trendline is vertical, the point with the higher price value is
considered the ending point.

However, if the ending point of a trendline is changed (by EasylLanguage or by using the
drawing tool) such that it has an earlier date than the starting point, the ending point then
becomes the original starting point of the trendline.

Syntax:
Valuel = TL_Set End(TI _I D, eDate, eTinme, eVal)

Parameters:)))) o)
TI_ID is a numeric expression representing the identification number of the trendline, and

eDate, eTime, and eVal are numeric expressions representing the trendline’s new ending
point date, time, and price value, respectively.

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

This reserved word returns zero (0) when it successfully changes the end point of a
trendline, and one of the EasylL anguage drawing object errors when it fails. For example,
if the end point of the trendline is set to exactly the same value of the start point, the

106 Drawing Trendlines on Price Charts CHAPTER 2

reserved word will return an error -5. Also, it is important to remember that if an invalid 1D
number is used, the reserved word will return a value of -2 and no additional operations will
be performed on any trendlines by the trading signal, analysis technique, or function that
generated the error.

Example:
The following statement sets the end point of trendline #5 to the current bar’s high price:

Val uel = TL_Set End(5, Date, Tine, High);

TL_SetExtL eft

Trendlines can be extended to the left or right. This reserved word enables you to toggle the
trendline between extended to the left and not extended.

Syntax:
Val uel = TL_Set Ext Left (Tl _I D, Extend)

Parameters:) .)] .
TI_ID is a numeric expression representing the ID number of the trendline, and Extend is a

true/false expression that either extends the trendline to the left or not.

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal bar and extend it to

the right:
Variable: 1D(-1);
If Low < Low 1] AND O ose > High[1l] Then Begin
ID = TL_New(Date[1], Tine[l], Low, Date, Tinme, Low);
Val uel = TL_Set Ext Ri ght (I D, True);
End;

TL_SetExtRight
Trendlines can be extended to the left or right. This reserved word enables you to toggle the
trendline between extended to the right and not extended.

Syntax:
Val uel = TL_Set Ext Ri ght (Tl _I D, Extend)

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 107

Parameters:
TI_ID is a numeric expression representing the ID number of the trendline, and Extend is a

true/false expression that either extends the trendline to the right or not.

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal bar and extend it to

the left and right:
Variable: 1D(-1);

If Low < Low 1] AND O ose > High[1l] Then Begin
ID = TL _New(Date[1l], Tine[l], Low, Date, Tinme, Low);
Val uel = TL_Set Ext Ri ght (I D, True);
Val uel = TL_Set Ext Left (1D, True);

End;

TL_SetSize

This reserved word changes the thickness of the specified trendline. Zero (0) is the
thinnest and six (6) is the thickest setting.

Syntax:
Valuel = TL_Set Si ze(Tl _I D, Num

Parameters:))))]
TI_ID is a numeric expression representing the ID number of the trendline, and Num is a

numeric expression representing the thickness of the trendline, 0 - 6.

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement sets the line style of trendline #10 to the thinnest line style

setting:

Val uel = TL_Set Si ze(10, 0);

108

Drawing Trendlines on Price Charts CHAPTER 2

TL_SetStyle

This reserved word enables you to modify the style of the specified trendline.

Syntax:
Valuel = TL_Set Style(TlI _ID, Style);

Paramgaters:
TI_ID is a numeric expression representing the ID number of the trendline whose style you

want to change, and Style is a numeric expression representing the new line style for the
trendline.

The possible styles are:

Tool_Solid 1
— — | Tool Dashed 2
................ Tool_Dotted 3
———— = Tool_Dashed?2 4
—-—i— e Tool_Dashed3 5

You can use either the number or the reserved word. The style only applies when the
trendline is set to the thinnest size, which is zero (0).

Notes:
Valuelis any numeric variable or array. You must assign the trendline reserved word

to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading signal, analysis technique, or function that generated the error.

Example:
The following statement changes the line style of trendline #10 to a dotted line:

Val uel = TL_Set Styl e(10, Tool dotted);

The Basic EasyLanguage Elements Understanding Quote Fields 109

Understanding Quote Fields

There is a category of reserved words called Quote Fields. These words are data-related
words specific to a symbol that are offered by the datafeed, and that are forwarded through
the GlobalServer and made available to you in EasylLanguage for use with RadarScreen and
OptionStation. This data is available only as snapshot information—no historical values are
available.

The main purpose of these words is to allow indicators applied to RadarScreen and
OptionStation to use less memory and be more efficient; in other words, to optimize the
performance of your grid applications.

Itis important to remember that it is not possible to refer to historical values for any of these
quote fields. They are useful for performing analysis on intraday minute and tick bars and
referencing the current day’s information (e.g., daily high, low, open).

Following is a list of the quote fields available in the ProSuite 2000i applications. For de-
scriptions of these words, including examples of their use, see
Appendix C, “Reserved Word Quick Reference”:

PLEASE NOTE: Availability of the data for any quote field depends on the datafeed.

g_DatelLastTrade
g_ExchangeL.isted
g_Headline
g_High

g_Last

g_Low

g_Minute

m Category m Cusip

m Description m ExpirationMonth

m ExpirationRule m ExpirationStyle

m ExpirationYear = Expired

m FirstNoticeDate m HistorySettings

= Maturity = MinMove

= PointValue = (_7DayYield

m g Ask m g _AskExchange

m (g _AskSize = (_Bid

= (_BidExchange = (_BidSize

m (Close s (_Datafeed
g_Date g_Datel astAsk

g_DownVolume
g_ExpirationDate
g_HeadlineCount
g_Hour
g_LastTradingDate
g_Margin
g_MinutesDelayed

110 Multimedia and EasyLanguage

CHAPTER 2

g_Month
g_NetChange
g_NewsDay
g_Open
g_OptionType
g_PreviousDate
g_PreviousLow
g_PreviousOpenlnterest
g_PreviousVolume
g_TimeLastAsk
g_TimeLastTrade
g_TradeVolume
g_UpVolume
g_Yield

Sessions
SymbolName
SymbolRoot

g_NetAssetValue
g_NewsCount
g_NewsTime
g_Openlnterest
g_PreviousClose
g_PreviousHigh
g_PreviousOpen
g_PreviousTime
g_Time
g_TimeLastBid
g_TotalVVolume
g_UnchangedVolume
g_Year
g_StrikePrice
StrikeConfidence
SymbolNumber

Note: If a quote field has the same name as another reserved word, to reference the
quote field, you must use the pound sign (#) as a prefix.

Multimedia and EasyLanguage

You can include a sound (.wav) file or a video file (.avi) in any of your trading signals,
analysis techniques, or functions. Common uses of audio and video include alerts and
commentary. You can write your analysis techniques such that when an alert is triggered,
a video and/or a sound file is played.

The reserved words you use to include sound and video files are described next.
Playing Sound Files

There is only one reserved word you use to play sounds; it is described below.
PlaySound

This reserved word finds and plays the specified sound file (.wav file). This reserved
word returns a value of True if it was able to find and play the sound file, and it returns
a value of False if it is not able to find or play it.

The Basic EasyLanguage Elements Multimedia and EasyLanguage 111

Syntax:
Condi tionl = Pl aySound(Fi | eNane) ;

Parameters:

Conditionl is any true/false variable or array, and FileName is any text string expression
that represents the full path and file name of the sound file to be played. Only .wav files
can be played.

Notes:

We recommended that you use this reserved word only on the last bar of the chart or on
bars where the commentary is obtained. Otherwise, you may find that the .wav file is
played more often than you intended. For example, if your intention is to play a .wav file
whenever a certain bar pattern occurs, and this pattern occurs 50 times in the price chart,
the trading signal, analysis technique, or function will play the .wav file 50 times when it
is applied to the price chart. Also, the .wav file is only played once per bar, even if the
event occurs more than once intrabar (unless the Update Every Tick option is enabled,
in which case, the .wav file will play with each new tick while the event is True).

Example:
The following statements play the sound file Ding.wav when there is a key reversal
pattern on the last bar of the chart:

I f LastBarOnChart AND Low < Low 1] AND Cd ose > High[1] Then
Condi tionl = Pl aySound("c:\w ndows\ sounds\ di ng. wav");

Playing Video Files

You can play a video file (.avi file) using a combination of three reserved words.

EasyLanguage allows you to build video clips out of many different .avi files, and it
allows you to mix and match video clips at will.

First, you obtain a video clip ID number for each video clip that you will be using in your
trading signal, analysis technique, or function, then you specify what .avi files will make
up that video clip. You can play the resulting video clip at any time.

The three reserved words necessary to create video clips are described next.

MakeNewMovieRef

This reserved word creates a new video clip and returns a numeric value representing the
ID number of the new video clip created.

Syntax:
Val uel = MakeNewMbvi eRef ;

Parameters:))
Valuel is any numeric variable or array.

Notes:
Once you create the video clip using this reserved word, you can add one or more .avi
files to it using the reserved word AddToMovieChain. You must save the ID number of

112 Multimedia and EasyLanguage CHAPTER 2

the video clip as it will be the way to reference the video clip in order to add .avi files as
well as play it.

Example:
The following statement creates a new video clip and assigns the ID number to the
variable Valuel:

Val uel = MakeNewMbvi eRef ;

AddToMovieChain

This reserved word adds .avi files to an existing video clip and returns a true/false value
representing the success of the operation. If the reserved word was able to add the .avi
file to the video clip, it returns a value of True; if it was not, it returns a value of False.

Syntax:
Conditionl = AddToMovi eChai n(Mvie ID, File);

Parameters:

Conditionl is any true/false variable or array, Movie_ID is a numeric expression
representing the ID number of the video clip to which you’re adding the .avi file, and File
is a text string expression representing the full path and file name of the .avi file to add
to the video clip.

Notes:
When a video clip is played, it will play all the .avi files in the order they were added to
the video clip.

Example:
The following statements create a video clip and add two .avi files to it:

Variable: 1D(-1);

| D = MakeNewMovi eRef

Condi tionl = AddToMovi eChai n(I D, “c:\M/Movie.avi”);
Condi ti on2 = AddToMovi eChai n(1 D, “c:\ MO her Movi e. avi”);

PlayMovieChain

This reserved word plays a video clip and returns a true/false expression representing the
success of the operation. If the reserved word was able to play the video clip, it returns a
value of True, if it was not, it returns a value of False.

Syntax:
Conditionl = Pl ayMvi eChai n(Movie_|ID);

Parameters:)) .])
Conditionl is any true/false variable or array, Movie_ID is a numeric expression represent-
ing the ID number of the video clip.

The Basic EasyLanguage Elements Multimedia and EasyLanguage 113

Notes:
Once you have created a video clip using the reserved word MakeNewMovieRef and added

.avi files to the video clip, you are ready to play it. We recommend you use the reserved
word PlayMovieChain only on the last bar of the chart or on bars where the commentary
is obtained (using the AtCommentaryBar or LastBarOnChart reserved words).
Otherwise, you may find that the video clip is played more often than you need it to.

If your intention is to play the video clip when a certain bar pattern occurs, and this
pattern occurs 50 times the price chart, the trading signal, analysis technique, or function
will play the video clip 50 times when applied to the price chart.

Example:
The following statements create and play a video clip on the bar where commentary is

obtained:
Variable: 1D(-1),;
If BarNunber = 1 Then Begin
| D = MakeNewMovi eRef ;
Condi tionl = AddToMovi eChain(ID, “c:\MNMovie.avi”);
Condi ti on2 = AddToMovi eChai n(1 D, “c:\M/OQ her Movi e. avi ") ;
End;

I f At Corment aryBar Then
Conditionl = Pl ayMvi eChain(1D);

Notice that the video clip is created and the video files are added to it only once by
using an IF-THEN statement to check for the first bar of the chart. If we don’t use this
IF-THEN statement, the indicator will create as many video clips as there are bars in
the chart.

Note: You can also use the reserved word LastBarOnChart instead of
AtCommentaryBar.

114 Multimedia and EasyLanguage CHAPTER 2

CHAPTER 3

EasyLanguage for TradeStation

This chapter covers EasyLanguage specifically for use with TradeStation 2000i.

You are introduced to syntax for writing Trading Signals as well as the Trading Strategy
Testing Engine, which is the engine that performs the backtesting and automation of your
Trading Strategies.

This chapter also describes the reserved words for use with indicators and studies
(ShowMe, PaintBar, ActivityBar, and ProbabilityMap) when working with TradeStation.

In This Chapter

® Writing Trading Signals...........cccccvovae 116 m Writing Indicators and Studies............. 148
m The Trading Strategy Testing Engine .. 117 ® Writing ShowMe and PaintBar Studies 154
B Trading Verbs.......ccccoooeiniiiiincnee 131 ® Writing ProbabilityMap Studies 159
m Understanding Built-in Stops............... 144 m Writing ActivityBar Studies................. 166

116 Writing Trading Signals CHAPTER 3

Writing Trading Signals

EasyLanguage enables you to express your trading ideas very specifically using
TradeStation Trading Signals. An example of a statement within a Trading Signal is:

Buy 100 Shares Next Bar at Market;

The statements used to create in your Trading Signal have two parts, which are very
similar to the language you use to communicate with your broker. The first part of the
statement is the trading order, which is a description of the action you want to perform;
for example, buy 100 shares. The second part of the statement is the execution method,
which is exactly how (when and at what price) the order should be carried out; for
example, next bar at market.

There are four reserved words you can use to express your trading ideas when writing
Trading Signals. We refer to these words as trading verbs, and these are:

Trading Verb Description

Buy Cover all short positions and initiate a long position
Sell Cover all long positions and initiate a short position
ExitLong Close a long position

ExitShort Close a short position

Figure 3-1. Trading Verbs

Each one of these orders can have four different execution methods:
... this bar on close
... next bar at market
... next bar at price stop

... next bar at price limit

As with all other EasyLanguage statements, the statements created using these trading
verbs are evaluated at the end of every bar, at which point an order is placed.

When an order is executed this bar on close (i.e., at the close of the current bar), it is exe-
cuted immediately when the bar is closed. If it is specified as a next bar at market order, it
is executed at the opening price of the next bar. Stop and limit orders are left as open orders
that remain active throughout the next bar, until the price specified is met or the bar is
closed (completed).

Depending on the trading verb used, stop and limit orders translate into or higher or or low-
er than the specified price. The statement Buy next bar at 100 limit opens a long position
during the next bar at the first price available at or under 100. Similarly, the statement
ExitShort next bar at 50 stop closes a short position during the next bar at the first traded
price at or over 50. It is possible for stop and limit orders not to be filled (i.e., price never
reached); in this case, the orders are canceled at the close of the bar.

Figure 3-2 shows the meaning of the different orders.

EasyLanguage for TradeStation The Trading Strategy Testing Engine 117

Trading Verb Stop Limit

Buy or Higher or Lower
Sel | or Lower or Higher
Exi t Long or Lower or Higher
Exi t Short or Higher or Lower

Figure 3-2. Stop and Limit orders

Each component of a trading order is discussed in the section “Trading Verbs” on page 131.

The Trading Strategy Testing Engine

To as accurately as possible reproduce how a Trading Strategy would have performed in
the past, and to keep track of your trading rules as new data is collected, TradeStation uses
a powerful Trading Strategy Testing Engine. This engine takes all the orders generated by
the Trading Strategy applied to the chart and creates the TradeStation Strategy Performance
Report.

This section covers all the different procedures that the Trading Strategy Testing
Engine uses, and the assumptions it makes in order to evaluate the Trading Strategy applied
to a chart.

The Trading Strategy Testing Engine performs two functions, backtesting and automation.
Backtesting is the process of analyzing historical data and deriving historical profitability
results, and automation is the process of monitoring and analyzing new data as it is ob-
tained. This section describes each process in detail.

Overview

Once you create a price chart and apply a Trading Strategy to it, TradeStation evaluates all
the Trading Strategy rules for the very first (oldest) bar on the chart—as it does with all
EasyLanguage procedures—and generates the trading orders (to buy, sell or exit) to be ex-
ecuted either at the close of that first bar or on the next bar.

Once TradeStation evaluates all instructions for the first bar on the chart, it reads the second
bar of data and evaluates any orders that were left active from the first bar with the prices
of the second bar, looking for possible fills. If tick data is available, TradeStation can look
at each traded price, or tick, to determine the price at which the orders would have been
filled, or if they would have been filled at all. If there is no tick data available, TradeStation
simulates the fill prices using several market assumptions explained later in this section.

Once the Trading Strategy Testing Engine is done evaluating the orders that were active
through the second bar, TradeStation returns to the EasylLanguage instructions that com-
pose the Trading Strategy and generates the necessary orders for the close of the second bar
and places those for the third bar. This process, called backtesting, is repeated on every bar
until the last bar on the chart is reached (the most recent bar). The results of each trade are
stored and are presented in a variety of ways in the TradeStation Strategy Performance Re-
port, which is commonly referred to as the Strategy Report.

118 The Trading Strategy Testing Engine CHAPTER 3

The second part of the process is the automation of new orders. Backtesting takes a few sec-
onds to complete, at which point, TradeStation begins to evaluate the new data as it is re-
ceived. TradeStation also monitors any outstanding orders remaining from the backtesting
process. When each new bar is completed, TradeStation evaluates the EasylL anguage in-
structions of the Trading Strategy for this new bar, and places any orders for the close of
the current bar and/or the next bar. This process is repeated on every new bar until the
Trading Strategy is deleted from the chart or the workspace is closed.

Automation and backtesting are discussed in detail next.

Automation

Automation is the process of monitoring new data that is received by the GlobalServer for
the symbol to which the Trading Strategy is applied. The rules followed by the Trading
Strategy Testing Engine to evaluate the Trading Strategy orders are described next.

Price at Which Orders are Placed and Filled

The very first thing TradeStation does to any order it receives from a Trading Strategy
is verify that the order has a valid price for the instrument to which it is applied.

A valid price is any price that has a valid decimal value compared to the settings of the
charted symbol. The settings are the price scale and the minimum value.

If the price scale of a given symbol is 1/100, and the minimum movement is 10, then
this symbol only trades in 10ths of a point; therefore, 100.1, 950.5 and 10,000.7 are
valid prices whereas 95.125 is not.

If the order being processed is an or higher order, the price is rounded up to the nearest
valid trading price. If it is an or lower order, the price is rounded down to the nearest
price. Figure 3-3 describes how orders are interpreted by the Trading Strategy Testing

Engine.
Trading Verb Stop Limit
Buy or Higher or Lower
Sell or Lower or Higher
ExitLong or Lower or Higher
ExitShort or Higher or Lower

Figure 3-3. Stop and Limit orders

To continue with the above example, in which the price scale is 1/100 and the minimum
movement is 10, if an order to Buy at 100.125 limit is placed, this order will be placed in
TradeStation as an order to Buy at 100.1 or anything lower. If an order is placed to Buy
at 100.125 stop, this order will be placed as Buy at 100.2 or higher.

This rounding is essential because if an order is received to buy at 100.125 or higher, it
means that you do not want to buy at 100.124, or at 100.120, or much less at 100.1
because the order stated ‘100.125 or higher’; therefore, the only alternative is to round
up to the nearest valid trading price. The opposite is done for or lower orders for the same
reason.

EasyLanguage for TradeStation The Trading Strategy Testing Engine 119

Determining Which Order to Fill

A Trading Strategy can place more than one order of the same type (buy, sell, or exit)
for a particular bar, and when it does, the Trading Strategy Testing Engine determines
which order to fill by following two rules:

Rule 1: Orders on Close and Next Bar at Market

Orders that are placed to be filled this bar at the close have the highest priority, once all
these orders have been filled, the next bar at market orders are evaluated. If there is more
than one order of the same type (e.g., three orders to buy this bar on the close), then the
order that was placed first takes priority and is filled first. This is important to remember
when designing a Trading Strategy that contains multiple entry orders that could enter the
market on the same bar.

For example, assume your Trading Strategy has a Trading Signal that will enter a long
position at the open of the next bar after a moving average crossover is found, and a
second signal that will enter a short position at the open of the next bar after a hammer
candlestick pattern formation is found. If both the long and short conditions are met on
the same bar, the Trading Strategy will issue orders to enter both a short and long position
is executed first, and the second order is executed immediately after.

If the entry signal to establish a short position is listed second, the Trading Strategy will
end that bar with a short position open. However, if the signal to establish a long position
is listed second, the Trading Strategy will end the bar with a long position.

In similar fashion, a Trading Signal can have multiple orders. If this is the case, the one
that appears first in the PowerEditor Trading Signal document will be filled first, and if
there are multiple signals in the Trading Strategy that place the same type of order, then
the orders from the signal that is listed first in the Signal tab of the TradeStation
StrategyBuilder is given priority (Figure 3-4). You can rearrange the Trading Signals
using the Move Up and Move Down buttons in the Signals tab.

System Properties: Candlestick Patterns =
General Signals | Inputsl P}lramidingl Positionl

Sighals included:

Hame Long Entry Long Exzit Short Entry | Short Exit
1 |Hamimer v

2 |Morning Star

3 |Dark Cloud

4 |Hanging Man

S | &TR Trailing LX v
B |&TR Traiing S v

WL

Move Up Mave Down Add | Delete |

Ok | Cancel I Help |

Figure 3-4. Trading Signals in the TradeStation StrategyBuilder. You can move the signals up or down
to specify the order in which they are read by the engine.

120 The Trading Strategy Testing Engine CHAPTER 3

Another example is when a Trading Strategy includes two Trading Signals to enter a long
position, Signal A and Signal B. Each will enter a position with different position sizes.
Assume that Signal A will open a position with 100 shares, and Signal B will open a
position with 500 shares. If both signals issue an order to buy on the same bar, whichever
signal is listed first in the TradeStation StrategyBuilder is filled, the second order is
ignored.

Note: It is possible to enable pyramiding for a Trading Strategy, in which case multiple
entries in the same direction can be filled. The rules used to process orders for Trading
Strategies that allow pyramiding are explained on page 124.

To summarize this rule: this bar on close orders are evaluated first, then next bar at
market orders. If there are multiple orders of the same type, then the orders that come
from the signal that is listed first in the TradeStation StrategyBuilder have a higher
priority. Furthermore, if there is more than one order of the same type in a Trading Signal,
the orders that appear first in the PowerEditor Trading Signal document are evaluated
first, and the rest are ignored (unless pyramiding is allowed).

As shown in Figure 3-5, if Signal A is listed first in the TradeStation StrategyBuilder then
Order A1 will be executed and the rest ignored; whereas if Signal B is listed first in the
TradeStation StrategyBuilder, then Order B1 will be filled.

Strategy

Signal A
Order A1
Order A2

Signal B
l— Order B1

Figure 3-5. Trading Strategy with multiple Trading Signals and orders.

Rule 2: Stop and Limit Orders

Once all market orders are evaluated, the Trading Strategy Testing Engine analyzes stop
and limit orders. If there are multiple stop or limit orders, the Trading Strategy Testing
Engine gives a higher priority to the order that is closest to the market (closest to the
current price).

This is done in order to simulate how stop and limit orders are actually filled. If a symbol
is trading at 950, and there are two limit orders to buy—one at 949 and one at 948—as
the market drops, the order to buy at 949 would be filled first, and the order to buy at 948
would be filled second. Therefore, the TradeStation Strategy Engine fills these orders in
that way, producing results are as realistic as possible.

As another example, assume there are three (or more) different orders to buy at a limit
price (e.g., buy 100 shares at 101 limit, buy 300 shares at 98 limit, and buy 500 shares at
95 limit). In this case, when pyramiding is disabled, TradeStation only displays the order

EasyLanguage for TradeStation The Trading Strategy Testing Engine 121

to buy 100 shares at 101 limit, which is closest to the market. If pyramiding is enabled,
then all three orders are shown, and the orders that are closest to the market are filled first.

To summarize this rule: if the stop or limit orders are an “or higher” order, TradeStation
gives a higher priority when filling orders to the order with the lowest price target. If the
stop or limit orders are “or lower,” TradeStation gives a higher priority when filling
orders to the highest price target.

Advanced Tips: ‘Acceptable Orders’

Although many brokers will not accept buy stop or sell limit orders below the market or
buy limit or sell stop orders above the market, TradeStation will accept these orders and
fill them on the next bar at the first available price, which will usually be the open of the
bar. For example, if the market is trading at 950 and the Trading Strategy places an order
to buy at 1,000 limit, TradeStation will fill this order during the next bar at the first price
under 1,000, which will probably be the open of the next bar.

Determining the Number of Shares when Opening Positions

When formatting Trading Strategies under the Costs tab (Figure 3-6) there is an option
to specify the default number of shares (or contracts) that the Trading Strategy will use
when opening a position. This number is used unless the Trading Strategy’s buy or sell
order specifies the number of shares/contracts to buy, sell or close out (as discussed in
the section, “Trading Verbs” on page 131). When the order specifies the number of
shares/contracts, it will override the setting in the Costs tab.

Format Strategy: I

Inputs I Style Costs | Propertiesl

r— Commission

& FerUnit
Amount $ [0.000000 =

" Per Transaction

— Slippage B
& Per Unit

Amourt $ ID'DDDDDD = Per Tranzaction

— Margin [futurez only]

Armaunt $ |0.000000

ollars per Transaction $ | 10000000000
\ ki ot size I1
[~ Use Cmcw Tefau:

QK I Cancel Help

Fiqure 3-6. Format Strateqy - Costs tab

122 The Trading Strategy Testing Engine CHAPTER 3

Once it has determined the number of contracts/shares, the Trading Strategy Testing En-
gine will look at the setting under the Properties tab labeled Entry Settings: Maximum
Number of contracts/shares per position (shown in Figure 3-7). If necessary, the number
of contracts/shares of any orders are adjusted so that the total number of contracts/shares in
an open position does not exceed the number specified in this option.

If there is no open position, and a Trading Strategy places an order to buy 5,500 shares, and
the number entered under the Properties tab is 5,000, the Trading Strategy Testing Engine
will reduce the number of shares to 5,000.

Also, assuming the same maximum limit, if the Trading Strategy allows for pyramiding,
and there are 1,000 shares in the open position, and the Trading Strategy places an order to
buy 5,500 shares, the Trading Strategy Testing Engine will modify the order to 4,000
shares.

In summary, to determine how many contracts/shares the order will include, we need to
find the lowest of the two numbers:

= Maximum contracts/shares per position (minus the current shares/contracts held)
as specified in the Properties tab

m Number of contracts/shares requested by the order

The Maximum contracts/shares per position option enables you to set a global limit to
the number of contracts/shares traded by a Trading Strategy. This allows you to vary the
limit depending on the symbol you are trading without having to modify the Trading Sig-
nal(s) within the Trading Strategy.

Limiting the Number of Open Entries per Position

When you enable pyramiding, it is possible for a Trading Strategy to buy (or sell short) a

number of consecutive times (increasing the size of the position). You can specify the max-
imum number of times the Trading Strategy can buy (or sell short) without closing any of
the open entries. You set this in the Entry Settings section of the Format Strategy dialog
box, as shown in Figure 3-7.

The Maximum open entries per position option enables you to force the Trading Strat-
egy to ignore any new orders to add to the current position once the Trading Strategy has

EasyLanguage for TradeStation The Trading Strategy Testing Engine 123

already bought (or sold short) a specified number of consecutive times in a single posi-
tion.

Format 5trategy: I
Inputsl Style I Costz Properties I

ttings [multiple entriez in zame direction]—

= Allow for differsnt entry signals only
= Allow for zame and different entry signals

— Entry Settings

t aximurn open entries per position IED
Maximum contracts/shares per position IBEDDD

— B acktesting Settings

™ Shateqy testing resolution
=1 Tick B i |1 0 [y

tax number of bars strategy will re[erenceIED

I Generate orders for nest bar
I Use as shrateqy default

ak I Cancel Help

Figure 3-7. Format Strategy - Properties tab.

Stand-by Orders

Stand-by orders are orders that are generated by the Trading Strategy that are not active.
They remain on stand-by for the duration of the bar on which they were placed until either
the bar is closed and the order is discarded, or conditions change during the bar such that
the order is made active.

For example, assume you have applied a Trading Strategy to a daily chart, the bar being
evaluated is a Monday, and your current position is flat (neither long nor short). At this
point, the Trading Strategy places an order to exit a long position on the next bar at the
low or anything lower. Since you are not currently in a long position, TradeStation
generates this order and places it on stand-by. You are not informed that this order has
been generated, it is invisible to you.

Now, assume that subsequently, an order to buy is placed for the next bar. During the
next bar (the Tuesday bar), the entry order is filled (and now your position is long). At
that point, the status of the exit order changes from stand by to active (and is listed on
the Active Orders tab of the Tracking Center window). Conditions changed such that
the order was made active. However, if no long position had been established during
the Tuesday bar, the exit order would have been discarded.

This stand-by feature enables you to place protective stops on the bar of entry; the order
is placed on stand-by only until the close of the bar on which it is placed. Following is
a list of scenarios under which orders are placed on stand-by:

124

The Trading Strategy Testing Engine CHAPTER 3

General Scenarios:

If the Trading Strategy is not in a long position, all exit orders for long positions
are placed in stand-by.

If an exit order for a long position is tied to a specific entry, and the current long
position was not initiated by the entry to which the exit is tied, the exit order is
placed in stand-by.

If the Trading Strategy is not in a short position, all exit orders for short positions
are placed in stand-by.

If an exit order for a short position is tied to a specific entry, and the current short
position was not initiated by the entry to which the exit is tied, the exit order is
placed in stand-by.

If there are multiple or higher exit orders, the Trading Strategy traverses the or-
ders, starting from the order with the lowest price, and adds the number of shares/
contracts in each exit order. Any orders above and beyond the number of outstand-
ing shares/contracts are placed in stand-by.

If there are multiple or lower exit orders, the Trading Strategy traverses the orders,
starting from the order with the highest price, and adds the shares/contracts that
each order is covering. Any orders above and beyond the number of outstanding
shares/contracts are placed in stand-by.

No Pyramiding:

All cases already described under ‘General Scenarios’.

If the Trading Strategy is already in a long position, any additional stop or limit
buy orders are placed on stand-by.

If the Trading Strategy is in a short position, any additional stop or limit sell orders
are placed on stand-by.

If the Trading Strategy is in a long or short position, and there is more than one or
higher exit order, all exit orders except the one with the lowest target price are
placed on stand-by.

If the Trading Strategy is in a long or short position, and there is more than one or
lower exit order, all exit orders except the one with the highest target price will be
placed on stand-by.

If there are multiple or higher or or lower entry orders while the Trading Strategy
is not in a long or short position, all orders except the order that is closest to the
market will be placed on stand-by.

Pyramiding - Allow Multiple Orders in Same Direction by Same and Different Entry

Orders:

All cases already described under ‘General Scenarios’.

If the Trading Strategy has more than one or higher entry orders, it will consider
the lower orders first, and if the combined orders reach the maximum number of
shares/contracts allowed by the Trading Strategy, then all additional higher entry
orders will be placed on stand-by.

If the Trading Strategy has more than one or lower entry orders, it will consider
the highest orders first, and if the combined orders reach the maximum number of
shares/contracts allowed by the Trading Strategy, then all additional higher entry
orders will be placed on stand-by.

Pyramiding - Allow Multiple Orders in Same Direction by Different Entry Orders:

EasyLanguage for TradeStation The Trading Strategy Testing Engine 125

» All cases already described under ‘General Scenarios’.
e IfaTrading Strategy is in a long or short position, and a new order is generated
by the same entry signal that opened the position, then the order is placed on stand-

by.

Canceling Orders

As a general rule, all stop and limit orders are canceled at the close of the bar. For
example, if a trading strategy is applied to a daily price chart, and a buy limit order is
placed on Monday, then the order is active throughout the Tuesday bar. This limit order
is canceled at the close of the session on Tuesday if the target price of the limit order
is not met by the market. This applies to intra-day charts as well.

Note that we use the word bar instead of day. This implies that if you apply a trading
strategy to a 30-minute bar, and the trading strategy places a buy limit order at 10am,
the order is active from 10am to 10:30am (or the duration of the bar) and canceled if
the order is not filled at the close of the bar.

There is one exception to this rule, and that is when a trading strategy places the exact
same order for two or more consecutive bars. In this case, TradeStation will not cancel
an order to replace it with an exact duplicate. Instead, it leaves the order active until it
is filled, or the order is not placed (or it is changed in some way).

For example, let’s assume that the trading strategy we apply to a daily chart places an
order to buy 100 shares at 50 limit on Monday. This order remains active through
Tuesday, and is canceled at the end of the trading session on Tuesday unless the trading
strategy places another order to buy 100 shares at 50 limit during the Tuesday bar. If
any element of the order changes, such as the number of shares, the price, etc., the order
is canceled, and a new active order is placed.

When you work with intra-day charts, you can write day-only orders (orders that are
canceled at the end of the day) by having the trading strategy place the exact same order
repeatedly throughout the day once it finds its entry point.

Stop and limit orders are canceled at the close of the bar when:

m The order was not placed on this bar by the trading strategy

m The order was placed but either the number of shares or the target price changed
from last bar

m Adifferent trading signal generated the order in the current bar

m Adifferent trading signal with a higher/lower target price was placed at a price
closer to the market (then the order is placed in stand-by mode)

Backtesting

During backtesting, TradeStation reviews all the historical data and derives the historical
results for the Trading Strategy applied to the price chart.

126 The Trading Strategy Testing Engine CHAPTER 3

Strategy Testing Data Resolution

The finer the data resolution that the strategy can analyze, the more accurate the Trading
Strategy results are when comparing real-time results to backtested results. In real time,
stop and limit orders are monitored for possible fill prices on every tick received from your
datafeed; therefore, when your Trading Strategy includes stop and/or limit orders, to
achieve the same results when backtesting your Trading Strategy, it is necessary to have all
the historical tick data available.

A bar has four prices: the open, high, low, and close. By reading these four values, the only
certain fact is that the first and last prices traded correspond to the values of the open and
close, respectively. The order in which the market reached the high and low, and how much
the market oscillated when building the bar cannot be inferred from these four prices.
Therefore, when the tick data is not available, TradeStation must make assumptions about
how the market moved ‘inside the bar.’

As shown in Figure 3-8, when formatting a Trading Strategy, the Properties tab includes
a section labeled Backtesting Settings that contains the option Strategy testing
resolution. This option enables you to specify the data resolution to use when backtesting
your Trading Strategies. If you don’t specify an option, the data resolution of the price
chart to which the Trading Strategy is applied is used.

Format Strateqgy: %]

Inputsl Style I Costz Propertiss I

— Pyramiding 5 ettings [multiple entries in same direction]—
@ Da nat allaw

= Allow for different entry signals only

= Allow for same and different entry signals

— Entiy Settings

Maximum open entries per position IED
b aximumn contractsdshares per pogition IBEDDD
— Backtesting Setting
W
* Tick

o
Minute |1 " Day

Max nurber of bars strategy will referencel 50

™ Generate orders for nest bar
™ Use as strateqy default

QK I Cancel | Help |

Figure 3-8. Format Strategy - Properties tab.

When you set this option to test to the tick level (assuming that the data is available), the
Trading Strategy Testing Engine behaves the same way for backtesting as it would for
automation (real-time trading).

EasyLanguage for TradeStation The Trading Strategy Testing Engine 127

However, many times, it is not be feasible to have all the tick data necessary for
extensive back testing. In these cases, TradeStation evaluates as much tick data as is
available, and uses bar assumptions for the rest of the data.

Also, due to performance considerations (memory and speed), it may not be convenient
or necessary to backtest on every tick, but to backtest using a fine resolution instead.
For example, if a test is performed across 5,000 daily bars, the Trading Strategy can
look at 10-minute bars to find the fill prices instead of every tick, since 5,000 days of
tick data is an enormous amount of data to load and use on a price chart. In this case,
TradeStation will apply the bar assumptions to each 10-minute bar, looking for fill
prices for the stop and/or limit orders placed by the Trading Strategy. This significantly
improves the accuracy of the results (over using daily data to backtest) but reduces
considerably the resource requirements when compared to testing the Trading Strategy
on a one tick resolution.

On the other hand, if a Trading Strategy only places orders at the close of the current
bar or on the next bar at market, it is not necessary to backtest using a fine resolution
because these prices are always known.

Remember, from the four prices every bar has, we know at which price the bar opened
and at which price the bar closed, so if a Trading Strategy includes an order to buy at
the open of the next bar, this price will not be any different historically than in real
time. Examining the ticks that compose a bar reveals no additional information about
the open or closing prices of the bar. Therefore, enabling the backtesting resolution
setting for Trading Strategies containing only these types of orders does not increase
the backtesting accuracy of the Trading Strategy.

Bar Assumptions

When tick data is not available, TradeStation makes certain assumptions about how each
price bar was formed. These bar assumptions apply only when the Trading Strategy uses
stop and/or limit orders; they do not apply when it includes only on close or at market or-
ders, as described in the section above.

After extensive research, a few rules were established to describe the ‘normal’
behavior of bars. The Trading Strategy Testing Engine follows these rules in an attempt
to simulate the market activity when there is not sufficient data available. However,
these are market assumptions designed to improve the accuracy of the testing when
there is not enough data available, and historical results will not always match real-
time results. The assumptions are:

1. The market traded at every valid price throughout the range of the bar.

2. If the open price is nearer to the low than to the high (i.e., the open is in the
bottom half of the bar), the intra-bar movement is assumed to be Open -> Low
-> High -> Close, chronologically (see Figure 3-9).

3. Ifthe open price is in the upper half of the bar (i.e., nearer to the high than the
low), the intra-bar movement is assumed to Open -> High -> Low -> Close,
chronologically (see Figure 3-9).

128 The Trading Strategy Testing Engine CHAPTER 3

The first assumption implies that the fill prices of stop and limit orders during backtesting
may not be exactly the same as the results obtained while trading real time. Stop and limit
orders are interpreted as the first price available over or under a a certain level; if you place
a buy stop order at 100, and the market trades at 99.875, and then the next trade jumps in
price to 100.5, the real-time order is filled at 100.5, but if the backtest is performed and the
tick data is not available to the Trading Strategy, TradeStation will have no way of knowing
that the market jumped in price, so the order is filled at 100.

Bar Movement

Azsumption #2 -

Azsumption #3 B

Figure 3-9. Intra-bar movement assumption

The second and third assumptions are important only when there are multiple active orders
in one bar. If a Trading Strategy places both a stop loss and a profit target order, and both
prices are reached during one particular bar, the behavior of the market inside that bar de-
termines if the trade is a winner or a loser.

For instance, if the market dropped, reached the low, and then rallied to the high, the stop
loss was hit first and the trade lost money. However, if the high is reached first, the profit
target makes the trade a winner. Without the tick data available, there is no certain way to
determine how the market moved during the bar. The assumptions may or may not be cor-
rect.

Keep in mind however, that by law of averages, if a backtest includes sufficient incidents
of these scenarios, and they are resolved in a consistent fashion, the errors in favor and
against tend to offset each other.

Bouncing Ticks

The markets do not move in straight lines, and they tend to oscillate even when in a strong
trend. In fact, the market will rarely, if ever, move in the straight line as assumed by the
second and third market assumptions explained in the previous section. Even within a

bar, the market will usually oscillate as it reaches the highs and lows, and its movement
will generally more closely resemble the illustration in Figure 3-10 than a straight line.

EasyLanguage for TradeStation The Trading Strategy Testing Engine 129

To simulate this behavior, the Trading Strategy Testing Engine uses a technique called
‘bouncing ticks’ that simulates market oscillations whenever stop or limit orders are
filled.

Figure 3-10. Normal intra-bar price movement

The method by which TradeStation’s Strategy Testing Engine simulates this market
activity is by bouncing the assumed price a certain percentage of the bar’s range (10% by
default) in the opposite direction of any filled stop or limit order.

For example, if the range of the bar is 10 points, and a buy stop order is filled,
TradeStation looks down the bar as far as 1 point under the entry price of the buy stop
order looking for other orders to fill before continuing with the bar assumptions (Figure
3-11). If the stop or limit order filled is read as an or higher order, the Trading Strategy
Testing Engine bounces the tick down, if the order is read as an or lower order, it bounces

the tick up.
Eu'{ Filled! A Buy Stop Order
Bouncing Tick
Check
- Intra-bar market Intra-bar market Az=umption
Original
Biar Azsumption weith the Bouncing Ticks concept

Figure 3-11. Bouncing tick

Bouncing ticks affect Trading Strategy results in a very minor way, and only when the
Trading Strategy includes multiple stop and limit orders that are placed very close to each
other.

Let’s look an example of how bouncing ticks can affect your Trading Strategy results.

130 The Trading Strategy Testing Engine CHAPTER 3

Suppose there are three orders active for a particular bar: a buy stop order at 100, a sell
short stop order at 99.125, and an ExitLong limit order at 103. The market opens at 99.5,
goes up to 105, falls to 90, and finally closes at 92. What trades took place, and what is
the your market position at the close of the bar?

If bouncing ticks is not enabled (set to 0%), the buy stop order is filled first, followed by
the ExitLong limit order, resulting in a profit, and then the sell short order is filled,
leaving you in a short position at the close of the bar.

If bouncing ticks is set to 10%, the buy stop order is filled, then TradeStation bounces the
price 10% lower, hitting the sell stop (this exits you from the long position with a loss
and establishes a short position), and bounces the price again, this time upwards. At this
point, since there are no valid orders left (the ExitLong order is ignored since you are in
a short position), TradeStation finishes traversing the bar normally, and leaves you in a
short position. This example is illustrated in Figure 3-12.

Without bouncing ticks With houncing ticks
Buy filed ExitLong filed Buy Filled
> uyl lle:

ExitLang Limit) ExitLang Limit
f/ \\ Buy Stop l‘\/‘/ \\ Buy Stap
/ Sefl Stop / Sell Stap
Sell Filled

el Filed

Figure 3-12. Bouncing tick example

With this technique, TradeStation introduces several oscillations into the intra-bar move-
ment without having the underlying tick data. This particular example showed how the
bouncing tick technique can turn a winning trade to a losing trade; however, it can just as
easily turn a losing trade into a winning trade. Again, if a backtest includes sufficient inci-
dents of these scenarios, and they are resolved in a consistent fashion, the errors in favor
and against tend to offset each other.

Itis very important to remember that this technique is designed to simulate market activity,
but it is only a simulation. Actual market movement may differ significantly from this sim-
ulation, and produce differences in the TradeStation Strategy Performance Report results.

EasyLanguage for TradeStation Trading Verbs 131

Trading Verbs

Using the four trading verbs, you can simulate a wide variety of trading ideas and order
types. This section describes the four trading verbs—Buy, Sell, ExitLong, and
ExitShort—in detail.

Buy

This trading verb is used to open a long position (it covers your short positions and
opens a long position). The specifics of the order are defined by the optional
parameters used in the statement (i.e., number of shares, at what price, etc.).

Syntax:
Buy [(“Order Nanme”)] [Nunber of Shares] [Execution Method];

Only the word Buy is required to open a long position. The following is a complete Easy-
Language statement:
Buy ;

When the parameters are not specified, the default values used for this statement are:
Buy (“Buy”) This Bar on C ose ;

The above order uses the default number of shares/contracts specified by the Trading Strat-
egy in the Costs tab when formatting the strategy.

Each portion of the statement, Order Name, Number of Shares, and Execution Method is
described next.

Order Name

If your Trading Signal or your Trading Strategy includes multiple long entries, it is helpful
to label each entry order with a different name. By naming entry orders, you can easily
identify all positions, both on the chart and in the TradeStation Strategy Performance Re-
port. Also, naming the entry orders allows you to tie an exit to a particular entry order (for
information on doing this, refer to the discussion of the trading verb ExitLong on 136).

To name a long entry order, include a descriptive name in quotation marks and within pa-
renthesis after the trading verb Buy. For example:

Buy (“My Entry”);

This instruction initiates a long position named My Entry. Again, when a Trading Signal or
Strategy that contains this statement is applied to a price chart, the order name (also referred
to as signal name) is displayed on the chart under the onscreen arrows that correspond to

132 Trading Verbs CHAPTER 3

this statement, and in the TradeStation Strategy Performance Report under the Trade by
Trade tab (Figure 3-13).

¥ TradeStation Chart - (MSFT) Microsoft Cor.. [H[=] EI

MEBFT LAST- Dal\y 0752311999 C 90.937 -1258
ad

1
i i \ Lﬁ
i i ‘ Il[j[g2.000
i lfll dar ‘ {[] 'Fas.a00
| I \ |
:f'{l I {ug I :
! 1 } ﬂ : 1l]r} { 1\ H]li[}l 1 TradeStation System Report =] 3
. R FEE
i ! il [sd =] =
i i Date Type| Cnts| Price |Signal Name| Entry P/L |Cumulative
volume Averagem 5,50, black, black) 4gpgs0jIrade
! 65 6/3/1998 Buy 232 43 Du\ﬁsg\gncs_)
| | \ B/30M998 L Exit 232 5262 $2233.000 §1 675641
H ; BB 6/30/1998 Sell 190 526250 DG
! ! 7341998 SExit 190 57 0620 ATR (55430300 §1,035.611
B7 8/7/1998 Buy 187 53.7190 M5
Apr May Jun /311998 | Exit 187 51.5000 ATR (54149531 $620.658
K Jazs] 9/25/1998 Sell 153 54.5000 Hi
10/6/1998 SExit 183 51.5000 Hrr $548 000 §1 169 655
B3 10/6/1998 Buy 194 51.8000 Hrmr
10841998 LExit 194 44 0000 ATR (51,455 0000 (52553420
70 10/12/1998 Buy 206 496250 MS
141341999 LExit 206 B8.0000 ATR $3785.250 §3490008
Summary Trades IAnaIysisI Annuall Munth\yl Weeklyl Dailyl W’inILUssl Timel Graphsl Settin

Figure 3-13. Naming Trading Signals

Number of Shares/Contracts

To specify how many shares (or contracts) to open the long position with, place a
numeric expression followed by the words shares (or contracts) after the trading verb
Buy (and entry order name if used). Some examples:

Buy (“My Entry”) 100 Shares;
Buy 5 Contracts;

Buy Val uel Shares;

Note: The words shares and contracts are synonymous.

If the number of shares/contracts is not specified, the value entered under the Costs tab of
the Format Strategy dialog box is used. The Costs tab contains a section that controls the
default trade amount; this can be set to either a fixed unit or dollars per transaction. What-
ever is specified in this dialog box is used by the Trading Strategy Engine only if the Buy
statement does not specify the number of shares/contracts with which to open the position.

Execution Method
You can use four different execution methods with the Buy trading verb:

this bar on cl ose

next bar at narket

EasyLanguage for TradeStation Trading Verbs 133

next bar at price Stop
next bar at price Limt

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you cannot automate using
TradeStation. Given that all orders are evaluated and executed at the end of each bar,
TradeStation reads and issues the this bar on close order once the bar has closed (e.g., once
the daily trading session has ended). TradeStation fills the order using the close of the cur-
rent bar, but you must place an order at market for execution on the next bar. This invariably
introduces slippage.

The execution method next bar at price limit instructs TradeStation to buy at the first op-
portunity at the specified price or lower. The execution method next bar at price stop in-
structs TradeStation to buy at the first opportunity at the specified price or higher.

Stop and limit orders are filled as market if touched (MIT) orders. A MIT order becomes a
market order when the price of the symbol meets the specified order price. It is possible for
stop and limit orders not to be filled (i.e., price never met); in this case, the orders are can-
celed at the close of the bar.

Typically, traders use next bar at market and this bar on close execution methods when the
exact entry price is not crucial to their trading strategy and they expect a large upward
move.

Traders use buy limit orders when attempting to enter long positions at lower prices, when
working with support levels, or when attempting to establish a position at a bottom. And,
conversely, they use buy stop orders when searching for volatility or price break outs, or
when looking to ride momentum. Again, these are the common usages of these types of or-
ders; they are flexible enough to be used in many different ways.

Examples
The following statement buys 100 contracts/shares at the closing price of the bar:

Buy 100 Shares This Bar on C ose;
The following statement buys the default number of contracts/shares specified in the Costs
tab at the open of the next bar, and names this entry order Entry#1:

Buy (“Entry#1”) Next Bar at Market;
The next statement places an order to buy 5 contracts at the high of the current bar plus the
range of the current bar, or any price higher. Note that Range is a function that returns the

high minus the low. This order remains active throughout the next bar (until filled or can-
celed):

Buy 5 Contracts Next Bar at H gh + Range Stop;
The next statement places an order to buy 100 shares at the lowest low of the last 10 bars,

or any price lower. This order remains active throughout the next bar (until filled or can-
celed), and the order is named LowBuy:

Buy (“LowBuy”) 100 Shares Next Bar at Lowest(Low, 10) Limt ;

134

Trading Verbs

CHAPTER 3

Sell

This trading verb is used to open a short position (it closes your long position and opens
a short one). The specifics of the order are defined by the optional parameters used in
the statement (i.e., number of shares, at what price, etc.).

Syntax:
Sell [(“Order Nane”)] [Nunmber of Shares] [Execution Method]

Only the word Sell is required to open a short position. The following is a complete Easy-
Language statement:
Sel |

When the parameters are not specified, the default values used for this statement are:
Sell (“Sell”) This Bar on d ose;

The above order uses the default number of shares/contracts specified by the Trading Strat-
egy in the Costs tab when formatting the strategy.

Each portion of the statement, Order Name, Number of Shares, and Execution Method is
described next.

Order Name

If your Trading Signal or your Trading Strategy includes multiple short entries, it is helpful
to label each entry order with a different name. By naming entry orders, you can easily
identify all positions both on the chart and in the TradeStation Strategy Performance Re-
port. Also, naming the entry orders allows you to tie an exit to a particular entry order (for
information on doing this, refer to the discussion of the trading verb ExitShort on page 141).

To name a short entry order, include a descriptive name in quotation marks and within pa-
renthesis after the trading verb Sell. For example:

Sell (“My Entry”);

This instruction initiates a short position named My Entry. Again, when a Trading Signal
or Strategy that contains this statement is applied to a price chart, the order name (also re-
ferred to as signal name) is displayed on the chart over the onscreen arrows that correspond
to this statement, and in the TradeStation Strategy Performance Report under the Trade by
Trade tab (see Figure 3-13, “Naming Trading Signals,” on page 132).

Number of Shares/Contracts

To specify how many shares (or contracts) to open the short position with, place a
numeric expression followed by the words shares (or contracts) after the trading verb
Sell (and entry order name if used). Some examples:

Sell (“My Entry”) 100 Shares;
Sell 5 Contracts;

EasyLanguage for TradeStation Trading Verbs 135

Sel |l Val uel Shares;

Note: The words shares and contracts are synonymous.

If the number of shares/contracts is not specified, the value entered under the Costs tab of
the Format Strategy dialog box is used. The Costs tab contains a section that controls the
default trade amount; this can be set to either a fixed unit or dollars per transaction. What-
ever is specified in this dialog box is used by the Trading Strategy Engine only if the Sell

statement does not specify the number of shares/contracts with which to open the position.

Execution Method

You can use four different execution methods with the trading verb Sell:
this bar on close;
next bar at narket;
next bar at price Stop;

next bar at price Limt;

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you cannot automate using
TradeStation. Given that all orders are read and executed at the end of each bar,
TradeStation evaluates and issues the this bar on close order once the bar has closed (e.g.,
once the daily trading session has ended). TradeStation fills the order using the close of the
current bar, but you have to place an order at market to be executed on the next bar. This
invariably introduces slippage.

An order to Sell next bar at price Limit instructs TradeStation to sell at the first opportunity
at the specified price or higher. A Sell next bar at price Stop order instructs TradeStation to
sell at the first opportunity at the specified price or lower. Stop and limit orders are filled
as market if touched (MIT) orders. A MIT order becomes a market order when the price of
the traded symbol meets the specified order price. It is possible for stop and limit orders not
to be filled (i.e., price never met); in this case, the orders are canceled at the close of the bar.

As a general guideline, traders use market and at the close orders when the exact entry price
is not critical to the trading strategy and a large downward move is expected. They use Sell
limit orders when attempting to enter short positions at higher prices, when working with
resistance levels, or when attempting to sell short at a top. And conversely, they use Sell
stop orders whenever searching for volatility or price ‘break unders’, or when looking to
ride negative momentum. Again, these are the common usages of these types of orders;
they are flexible enough to be used in many different ways.

Examples
The following statement sells 100 contracts/shares at the closing price of the current bar:
Sell 100 Shares This Bar on C ose;

136

Trading Verbs

CHAPTER 3

This statement sells the default number of contracts/shares specified in the Costs tab of the
Format dialog box at the open of the next bar, and names this order Entry#2:

Sel|l (“Entry#2”) Next Bar at Market;
The following statement places an order to sell 5 contracts at the low of the current bar mi-
nus the range of the current bar, or any price lower. Note that Range is an EasyLanguage

function that returns the high minus the low of the current bar. This order remains active
throughout the next bar (until filled or canceled).

Sell 5 Contracts Next Bar at Low - Range Stop;
The following statement places an order to sell 100 shares at the highest high of the last

10 bars, or any price higher. This order remains active throughout the next bar (until
filled or canceled) and is named HighSell:

Sell (“HighSell”) 100 Shares Next Bar at H ghest(Hi gh,10) Limt;

ExitLong

This trading verb is used to close a long position. The specifics of the order are defined
by the optional components used in the statement (i.e., how many shares/contracts, at
what price, etc.).

Exit orders do not pyramid. Once the exit criteria is met and the exit order filled, the
order is ignored for that position until the position is modified (i.e., more shares/
contracts are bought or a new long position is established).

Syntax:
ExitLong [(“Order Nanme”)] [fromentry (“Entry Nane”)] [Nunmber of

Shares [Total]] [Execution Method];

Only the word ExitLong is required to exit a long position. For example:
Exi t Long ;

The default values used for the rest of the expression when they are not specified are:
Exi tLong (“LX’) This Bar on O ose;

The above statement exits all long positions.

Each portion of the statement, Order Name, Number of Shares, and Execution Method
is described next.

Order Name

If your Trading Signal or Trading Strategy includes multiple exits, it is helpful to label
each one with a different name. As shown in Figure 3-13, this enables you to identify
these exit orders in both the price chart and the TradeStation Strategy Performance
Report. The order name is included in both these windows.

EasyLanguage for TradeStation Trading Verbs 137

To assign an exit order a name, specify a name in quotation marks and within parentheses
immediately after the word ExitLong. For example:

ExitlLong (“My Exit”);
This instruction closes the entire long position, and the order is labeled My Exit.

Tying an Exit to an Entry

Itis possible to tie an exit instruction to a specific entry. This can be achieved only if you
named the long entry, and the long entry is in the same Trading Signal as the exit order.
Consider the following Trading Signal:

Buy (“MyBuy”) 10 Shares Next Bar at Market;
Buy 20 Shares Next Bar at High + 1 Point Stop ;
ExitLong From Entry (“M/Buy”) Next Bar at H gh + 3 Points Stop;

In the above example, the Trading Signal buys 30 shares total; your long position is 30
shares. However, the ExitLong instruction only closes out the 10 shares bought using the
MyBuy entry order. It ignores any other order, and does not close out the other 20 shares.
Therefore, this signal leaves you long 20 shares.

You can also close padrt of an entry order. For example, if your entry, which you named
“MyBuy” buys 10 shares, you can specify that you want to exit from entry “MyBuy” but
only close out 5 shares, not the entire 10:
Exitlong FromEntry (“MyBuy”) 5 Shares Next Bar at High + 3
Poi nts St op;

Important: The entry name is case sensitive. Be sure to use consistent capitalization.
Also, it is important to remember that exit orders do not pyramid; therefore, if an exit
does not close out a position, you will need another exit order (or buy/sell order) in
order to close out the position.

Number of Shares/Contracts

To specify how many shares (or contracts) to close, place a numeric expression followed
by the word shares or contracts after the trading verb ExitLong. Some examples:

Exi t Long 100 Shares;

Exi tLong From Entry (“MvAvg”) 10 Shares Next Bar at High + 1
Poi nt Stop ;

Note: The words shares and contracts are synonymous.

138

Trading Verbs

CHAPTER 3

If you do not specify the number of shares or contracts in the ExitLong instruction, the
exit order closes out the entire long position, rendering your position flat.

When you specify the number of shares/contracts, the ExitLong instruction exits the
specified number of shares/contracts from every open entry.

Therefore, if the Trading Strategy allows for pyramiding, and has bought 500 shares
twice (for a total of 1,000 shares), and an order to ExitLong 100 shares is placed by the
Trading Strategy, the instruction will exit a total of 200 shares: 100 shares from each of
the two entries. Figure 3-14 illustrates this example. After buying a total of 1,000 shares
(500 at two different entry points), the order based on the instruction Exitlong 100 shares
next bar at market exits a total of 200 shares, 100 from each entry, leaving you in a long
position consisting of 800 shares. The onscreen cues in Figure 3-14 show you how many
shares you hold in your current position.

l'.t,:‘ TradeStation Chart - [M5FT] Microzoft Corp LAST-Daily

MEFT LAST-Daily O07/26M 999 C=89187 -1.063 -1.18% O=88875

F100.000
F95.000

Fe0.0oo
Fe5.000
Fe0.000

F¥5.000

FFo.o00

ZH E xit Signal [Signal]

ExitLong 100 shares next bar at market:

Figure 3-14. The instruction ‘ExitLong 100 shares next bar at market' exits 100 shares out of each open entry.

However, if you want to exit a total of 100 shares, you can use the word Total in the
ExitLong instruction. Using the word Total instructs the Trading Strategy to exit 100
shares from the first open entry (first in, first out). This example is illustrated in Figure
3-15.

EasyLanguage for TradeStation Trading Verbs 139

':1,:‘ TradeStation Chart - [MSFT] Microsoft Corp LAST -Daily

MSFT LAST-Daily 072601999 C=29-187 -1.063 -1.18% O=33875

F100.000
Fas.000

F90.000

“ q l2s5.000
IHTi h‘H a0 onn
Lt f

1'“ {Hm l75.000

F7o.000

ZH Exit Signal (Signal)

ExitLong 100 shares total next bar at market;

Figure 3-15. The instruction ‘ExitLong 100 shares total next bar at market' exits 100 shares out of the oldest open entr(ies).

Execution Method
You can use four different execution methods with the trading verb ExitLong:

this bar on close
next bar at market
next bar at price Stop
next bar at price Limt

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you use with TradeStation when trad-
ing on a real-time/delayed basis. Given that all orders are read and executed at the end of
each bar, TradeStation evaluates and issues the this bar on close order once the bar has
closed (e.g., once the daily trading session has ended). TradeStation fills the order using the
close of the current bar, but you have to place an order at market to be executed on the next
bar. This invariably introduces slippage.

An order to ExitLong at price Limit instructs TradeStation to exit a long position at the first
opportunity at the specified price or higher. An ExitLong at price Stop instructs
TradeStation to exit a long position at the first opportunity at the specified price or lower.
Stop and limit orders are treated by TradeStation as market if touched (MIT) orders. It is
possible for stop and limit orders not to be filled (i.e., price never reached); in this case, the
orders are canceled at the close of the bar.

As a general guideline, traders use market and close orders when the exact entry price is
not critical to their trading strategy after a large move occurred. They use limit orders when
they are attempting to exit long positions at higher prices, to exit at resistance levels, or to

140

Trading Verbs

CHAPTER 3

exit at a top. And finally, they generally use stop orders whenever looking to stop losses,
or to place trailing stops. Again, these are common usage for the different type of orders;
they are flexible enough to be used in many different ways.

Tving the Exit Price to the Bar of Entry

When specifying the execution method, you can vary stop and limit orders by using ‘At$’
instead of “at’. Using At$ forces the Trading Signal to refer to the value the numerical ex-
pression Price had on the bar where the entry order was generated. Consider the following
statement:

Exi tLong From Entry (“MyBuy”) Next Bar At$ Low - 1 Point Stop;

The above statement places an order to exit the long position at one point lower than the
low of the bar where the order to establish the long position was generated (e.g., if an order
to buy next bar... is generated today, the prices referenced will be today’s, not tomorrow’s.
Even though the order was placed and filled tomorrow, it was generated today, and that is
the bar referenced).

To use the At$ reserved word, you must name the entry order, and the ExitLong instruction
must refer to the specific entry order.

As another example, if the maximum risk you will tolerate for a position is 5 points under
the closing price of the bar on which you generated the entry order, you can use the follow-
ing statement:

Exi tLong From Entry (“MyBuy”) Next Bar At$ Close - 5 Points
St op;

This is a valuable technique that allows you to refer easily to the prices of the bar on which
the entry order was generated.

Examples

This statement exits all contracts/shares of your open long position at the close of the
current bar. Your position will be flat.

Exi tLong This Bar on d ose;
The next instruction exits all contracts/shares of your positions opened by the entry order
Entry#1 at the open of the next bar, and the exit order is named LongExit.

Exi tLong (“LongExit”) FromEntry (“Entry#1”) Next Bar at Market;
The following statement places an order to close 5 contracts/shares in total at the low of the

current bar minus 1 point or anything lower. This order is active throughout the next bar
(until filled or canceled):

ExitLong 5 Contracts Total Next Bar at Low - 1 Point Stop;

The next instruction places an order to exit 100 shares from every entry at the high plus
the range of the current bar or anything higher. This order is active throughout the next
bar (until filled or canceled) and will be named HighExit.

Exi tLong (“H ghExit”) 100 Shares Next Bar at Hi gh + Range Linit;

EasyLanguage for TradeStation Trading Verbs 141

The following statement allows you to monitor your risk by placing an exit order 5 points
below the closing price of the bar that generated the long entry order:

ExitLong From Entry (“MyBuy”) Next Bar At$ Close - 5 Points
St op;

ExitShort

This trading verb is used to cover a short position. The specifics of the order are defined
by the optional components used in the statement (i.e., how many shares/contracts, at
what price, etc.).

Exit orders do not pyramid. Once the exit criteria is met and the exit order filled, the
order is ignored for that position until the position is modified (i.e., more shares/
contracts are sold or a new short position is established).

Syntax:
Exit Short [(“Order Nane”)] [fromentry (“Entry Name”)] [Number of

Shares [Total]] [Execution Method] ;

Only the word ExitShort is required to exit a short position. For example:
Exi t Short ;

The default values used for the rest of the expression when they are not specified are:
Exit Short (“SX’) This Bar on O ose ;

The above statement covers the entire short position.

Each portion of the statement, Order Name, Entry Name, Number of Shares, and Execution
Method is described next.

Order Name

If a Trading Strategy includes multiple exits, it is helpful to label each one with a
different name. As shown in Figure 3-13, this helps to identify these exit orders in both
the price chart and the TradeStation Strategy Performance Report.

To name an exit, specify a name in quotation marks and parentheses after the trading verb
ExitShort. For example:

ExitShort (“My Exit”);
This statement exits the short position in its entirety, and the order is named My Exit.

Tying an Exit to an Entry

It is possible to tie an exit instruction to a specific entry. This can be done only if you
name the short entry, and if the short entry is in the same Trading Signal as the exit. For
example:

142

Trading Verbs

CHAPTER 3

Sell (“MySell”);
Exi tShort fromEntry (“MSell”);

In the previous example, the ExitShort statement only acts upon entries established from
the entry named MySell and ignores entries by any other statements.

Important: The entry name is case sensitive. Be sure to use consistent capitalization.
Also, it is important to remember that exit orders do not pyramid; therefore, if an exit
does not close out a position, you will need another exit order (or buy/sell order) in
order to close out a position.

Number of Shares/Contracts

To specify how many shares/contracts to close out, use a numeric expression followed
by the word shares after the trading verb ExitShort. For example:

Exi t Short 100 Shares;

or

Exit Short 5 Contracts;

Note: The words shares and contracts are synonymous.

If you do not specify the number of shares/contracts in the ExitShort instruction, the order
exits all shares/contracts, rendering your position flat.

If you do specify the number of shares/contracts, the ExitShort instruction exits the
determined number of shares/contracts out of every open entry. For example, if the
Trading Strategy allows for pyramiding, and has shorted 500 shares three times (for a
total of 1,500 shares), and an order to ExitShort 100 shares is placed, the exit order will
exit a total of 300 shares: 100 shares from each one of the three entries. Refer to the
discussion on the trading verb ExitLong on page 136 for an additional examples and
charts illustrating this feature.

However, if the purpose of the ExitShort statement is to exit a total of 100 shares, you
can use the reserved word Total in the ExitShort statement. Using the word Total causes
the Trading Strategy to exit 100 shares from the oldest open entry (first in, first out).

Execution Method
You can use four different execution methods with the trading verb ExitShort:

this bar on close;
next bar at narket;
next bar at price Stop;

next bar at price Limt;

EasyLanguage for TradeStation Trading Verbs 143

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you use with TradeStation when trad-
ing on a real-time/delayed basis. Given that all orders are read and executed at the end of
each bar, TradeStation evaluates and issues the this bar on close order once the bar closes.
TradeStation fills the order using the close of the current bar, but you must place an order
at market to be executed on the next bar. This invariably introduces slippage.

An order to ExitShort at price Limit causes TradeStation to close a short position at the first
opportunity at the specified price or lower. An ExitShort at price stop order causes
TradeStation to close at the first opportunity at the specified price or higher. Stop and limit
orders are filled as market if touched (MIT) orders. A MIT order becomes a market order
when the price of the traded symbol reaches the specified target price. It is possible for stop
and limit orders not to be filled (i.e., price never reached); in this case, the orders are can-
celed at the close of the bar.

As a general guideline, traders use at market and on the close orders when the exact entry
price is not critical to their trading strategy, and after a large move occurred. They generally
use ExitShort limit orders when attempting to exit short positions at lower prices, at support
levels, or at a bottom. And finally, they use ExitShort stop orders whenever looking to stop
losses or place trailing stops. Again, this is the common usage for these type of orders; they
are flexible enough to be used in many different ways.

Tying the Exit Price to the Bar of Entry

When specifying the execution method, you can vary the stop and limit orders by using
‘At$’ instead of “at’. Using At$ forces the Trading Signal to refer to the value the numerical
expression Price had on the bar where the entry order was generated. Consider the follow-
ing statement:

Exit Short FromEntry (“MBuy”) Next Bar At$ High + 1 Point Stop;

The statement places an order to exit the short position at one point higher than the high of
the bar where the specified short entry order was generated. For example, if an order to sell
next bar is generated today, the prices referenced will be today’s, not tomorrow’s. Even
though the order was placed and filled tomorrow, it was generated today and that is the bar
referenced.

To use the reserved word At$, you must name the entry order, and the ExitShort instruction
must refer to the name of the specific entry order.

As another example, if the maximum risk you will tolerate for a position is 5 points over
the closing price of the bar on which you generated the order to enter the market, you can
use the following expression:

Exi t Short FromEntry (“MySell”) Next Bar At$ Close + 5 Points
St op;

This is a valuable technique that allows you to refer easily to the prices of the bar on which
the entry order was generated.

Examples

The next statement exits all contracts/shares of all open short entries at the close of the cur-
rent bar:

144

Understanding Built-in Stops CHAPTER 3

Exit Short This Bar on C ose;
The following instruction exits all contracts/shares of any short entries opened by the entry
order Entry#1 at the open of the next bar, and this order is named ShortExit.

Exit Short (“ShortExit”) FromEntry (“Entry#1”) Next Bar at
Mar ket ;

The next instruction places an order to close 5 contracts in total at the high of the current
bar plus 1 point or anything higher. This order is active throughout the next bar (until filled
or canceled):

Exit Short 5 Contracts Total Next Bar at H gh + 1 Point Stop;
The next instruction places an order to exit 100 shares out of every open entry at the low

minus the range of the current bar or anything lower. This order is active throughout the
next bar (until filled or canceled), and is named HighExit.

Exi t Short (“HighExit”) 100 Shares Next Bar at Low - Range Linit;

The following statement enables you to monitor your risk by placing an exit order 5 points
over the closing price of the bar on which you generated the short entry order:

Exit Short FromEntry (“MySell”) Next Bar At$ Close + 5 Points
St op;

Understanding Built-in Stops

Stops are exit trading signals that are not market driven; they exit you from the market
based on your risk tolerance or desired profit. TradeStation provides six built-in stops
(trading signals) that are written using specific reserved words. The built-in stops are
unique because the reserved words they use are recalculated on every tick instead at
the completion of a bar. In other words, they are active on the bar of entry and updated
for every bar of a position on a tick-by-tick basis. All other EasyLanguage instructions
you write are calculated at the completion of a bar only.

This unique behavior is especially important to remember when using the trailing stop.
Once a built-in stop order is placed, the value of the trailing stop is recalculated on
every tick, and if necessary, the stop order is canceled and a new stop order is placed
before the completion of a bar. This means that a built-in stop order can be generated,
placed, and filled on the same bar using the prices from that bar.

For example, assume you apply a trading strategy that contains a built in trailing stop
to a daily chart (when collecting real-time/delayed data). The price at which the order
is placed is recalculated every tick. If the price for the order differs from the last
calculation (e.g., because the market made a new high), then the open order is canceled
and a new order is placed on the current bar, regardless of the status of the bar.

The drawback to using the built-in stops (or your own trading signals written with the
specific reserved words) is that since they are updated on every tick, the given stop
price may not be realistically attainable because of the tick by tick updating of the stop

EasyLanguage for TradeStation Understanding Built-in Stops 145

price. In addition, the results of these stops (like any entry/exit trading signals) can be
affected by bar assumptions.

You can use the six built-in stops in your trading strategies, or you can use the specific
reserved words in your own exit trading signals. The eight specific reserved words are
listed next, along with a description of the corresponding trading signal.

SetBreakEven

This reserved word is used to place an order to exit the position or contract/share at the
breakeven point once the specified amount of profit is reached.

Syntax:
Set Br eakEven(Fl oor Amt)

Parameters:
FloorAmnt is the amount of profit to be reached before the exit order is placed.

Notes:
Use with SetStopContract or SetStopPosition.

Trading Signal:

Breakeven Stop-Floor — When the profit (for the position or per contract/share)
exceeds the breakeven floor, an exit order is generated. The exit order is a stop order
placed at the entry price (average entry price if multiple entries) plus the commission
specified in the Costs tab when formatting the strategy.

The profit on a position basis is calculated by subtracting any commissions specified
in the Costs tab from the overall position profit. The profit on a contract/share basis is
calculated by dividing the overall position profit by the number of contracts/shares and
then subtracting the commissions from the resulting value.

The Breakeven Stop-Floor trading signal only takes effect once a certain amount of
profit is reached, so in a given position, it may never take effect. Therefore, you should
not use it to limit losses.

SetExitOnClose

This reserved word is used to place an order to exit the position or contract/share at the
close of the current bar.

Syntax:
Set Exi t OnCl ose

Parameters:
None

Trading Signal:

Close at End of Day — The Close at End of Day trading signal has no inputs. It will
exit all open positions at the close of the day. It is particularly useful for day traders
who do not want to hold any positions overnight.

146 Understanding Built-in Stops CHAPTER 3

SetDollarTrailing

This reserved word is used to specify the amount, based on the maximum open position
profit, you are willing to lose (in dollars). The position or contract/share is closed out
when the specified amount is lost.

Syntax:
Set Dol | ar Trai i ng(Dol | ar Val ue)

Parameters:
DollarValue is the amount of the maximum open profit that you are willing to lose.

Notes:
Use with SetStopContract or SetStopPosition.

Trading Signal:

DlIr Risk Trailing — The DIIr Risk Trailing trading signal allows you to indicate the
maximum amount of money you are willing to risk on a position, based on the
maximum open position profit. The maximum profit is calculated from the point of
entry using the highest high when long, or the lowest low when short. The dollar
amount of profit per contract or per position you are willing to risk is then subtracted,
and the trailing stop is placed at that point.

For example, assume that a dollar risk trailing stop is placed for $500. A protective stop
would be placed for the maximum profit minus $500. If the amount you are willing to
risk is greater than the maximum open position profit, this trailing stop does not take
effect.

Consequently, the DIIr Risk Trailing trading signal only locks in profits; it does not exit
a position if you have a loss on the trade. Therefore, you should not use it to limit
losses.

SetPercentTrailing

This reserved word is used to specify the amount of the maximum open position profit
you are willing to lose (as a percent) as well as the profit level that must be reached in
order for the stop to take effect. The position or contract/share is closed out when the
specified percentage of the maximum profit is lost.

Syntax:
Set Per cent Trai | i ng(Fl oor Aimt, Anount)

Parameters:_ . .
FloorAmnt is the amount of profit to be reached before the stop takes effect. Amount is
the percent of the profit you are willing to lose.

Notes:
Use with SetStopContract or SetStopPosition.

EasyLanguage for TradeStation Understanding Built-in Stops 147

Trading Signal:

Percent Risk Trailing — The Percent Risk Trailing trading signal enables you to
indicate what percent of the maximum position profit you are willing to give back
before the position is automatically closed out. It also requires that you provide a
minimum profit level that must be reached by the position before the stop will take
effect.

The maximum profit is calculated from the point of entry using the highest high when
long or the lowest low when short. The percent of this amount per contract that you are
willing to risk is then subtracted, and the trailing stop is placed at that point.

For example, assume that a Percent Risk Trailing Stop is placed at 20% with a floor of
$500. Once profits exceed the floor value of $500, the stop will become active. The
stop is then placed for the maximum profit to date minus 20%.

If the maximum open position profit for the trade does not exceed the floor level, this
trailing stop does not take effect. Consequently, this stop only locks in profits, it does
not limit losses.

SetProfitTarget

This reserved word is used to specify the amount of profit you want to reach in order
to close out the position or per contract/share.

Syntax:
Set Prof i t Tar get (Dol | ar Val ue)

Parameters:
DollarValue is the amount of profit to reach in order to close the position (or exit from
the contracts/shares).

Notes:
Use with SetStopContract or SetStopPosition.

Trading Signal:

Profit Target — The Profit Target trading signal enables you to set a profit target (in
dollars per contract/share or per position) at which your position is automatically
closed out. If that profit level is never reached, the stop will not take effect. This stop
locks in profits, it does not limit losses.

SetStopLoss

This reserved word is used to specify the amount you are willing to lose per position
or per contract/share.

Syntax:
Set St opLoss(Dol | ar Val ue)

Parameters: o o
DollarValue is the amount you are willing to lose per position or per contract/share.

Notes:
Use with SetStopContract or SetStopPosition.

148 Writing Indicators and Studies CHAPTER 3

Trading Signal:
Stop Loss

The Stop Loss trading signal enables you to specify the maximum amount of money
you are willing to risk on any position, or on any one contract/share.

For example, if you specify a per position stop loss of $500 on your S&P 500 Futures
contracts, TradeStation automatically exits the entire position when losses on the
position reach $500. If on S&P 500 Futures, you specify a per contract stop loss of
$500, TradeStation automatically exits the position when losses for any contract reach
$500.

A Stop Loss trading signal should never be used as the only exit your trading strategy
is using as it requires the position to lose money in order to exit the trade.

For example, if the market goes in your favor, and you achieve a great deal of profit,
you would have to lose all of that profit, plus the amount you specify as the stop loss
value before the trading strategy would issue an order liquidating the contract/share or
position.

SetStopContract

This reserved word forces the stop that is used to be evaluated per contract/share. If
neither SetStopContract or SetStopPosition is used, the stop is evaluated on a position
basis.

SetStopPosition

This reserved word forces the stop that is used to be evaluated on a position basis. If
neither SetStopContract or SetStopPosition is used, the stop is evaluated on a position
basis.

Writing Indicators and Studies

Indicators and studies display information on a price chart. The most common definition
of an indicator is a mathematical formula that returns a number for every bar on a chart,
with its resulting value displayed as a line, histogram, or series of points.

Studies are much like indicators, except that they have specific formatting built-in. The
studies available to you in TradeStation are ShowMe, PaintBar, ProbabilityMap, and
ActivityBar.

This section discusses how to write indicators, and is followed by sections describing
how to write studies (ShowMe, PaintBar, ProbabilityMap, and ActivityBar).

Writing Indicators

When you apply an indicator to a price chart, you can format the indicator to display
their values in different ways; for example, as shown in Figure 3-16, you can format

EasyLanguage for TradeStation

Writing Indicators and Studies

149

the indicator to display as a line chart, as a histogram from the bottom of the chart, or

as a series of dots, etc.

MSFT LAST-Daily 0872611939 F56.000
! ! ! ! ol
: : ! :]I. {i
! I I l [h I 52,000
I I I |_‘
i i | \-. i { ":r L 49.000
i -44.000
U o ¥ ‘nu i i g
l }Hue J.' H
. . | F40.000
i i i |
Mnmentum(Close 100 13, 69
|||H||
Il . .||I||I|.|,_“, g |||||I||||I. ol N .|”|““ D . .|I|||| ||| 000
REliClose, 14 30,70 Green Magenta) G783 2000 7000
A [i A,JI_;%-””
| | W | [e0.00
- - , , , 30.00
iMar ipﬁxpr 'May iJun iJul
Kl [| i

Figure 3-16. Different formatting styles of indicators

You can even format the properties of an indicator to display as a bar chart. For
example, in the case of an indicator with three plots, such as the 3-Line Moving

Average Indicator, you can format the indicator and set one plot to bar high, another to

150

Writing Indicators and Studies CHAPTER 3

bar low, and another to right tick. The 3-Line Moving Average indicator displayed as
a bar chart is shown in Figure 3-17.

|
H Format Indicator: Mov Avg 3 lines

l l Inputs Style |Scaling|Prope|ties|

I“H I & Simpbvgl
‘ l ’ l l l l Type: Colar:
Bar High LN e

Line

Histogram

! | | } [: Simphva2
H S

H”";l'mlm‘ | ! l|l;

jv
MovAvg3Iines(Close,4,9l,18,D) 92.984 90.340 8|?.191 HI [ok | cocd | Hep
i I IHI Il” B REER
h |] I e
““l‘llﬂ‘n”r. !r.‘_‘._,Hn:;r} : : [&2.000
;I Jun Jul Aug _ILI

Figure 3-17. Indicator formatted to display as a bar chart

For more information on formatting indicators, please refer to the Online User Manual.

Also, make sure you understand the concept of scaling with respect to price charts and
indicators. Using different scaling can dramatically alter the display of your indicators.
For information on scaling, search the Online User Manual Answer Wizard for
Indicator Formatting.

The Plot statements used to write indicators for price charts are discussed next.

PlotN(Expression, “<PlotName>", ForeColor, BackColor, Width)

Displays values, resulting from a calculation or an expression, in a price chart. For price
charts, the values displayed can only be numeric.

Syntax:
Pl ot N(Expr essi on[, “ <Pl ot Name>" [, For eCol or [, BackCol or, [, Wdth]]1]1);

Parameters:
N is a number between 1 and 4, representing one of the four available plots. Expression is

the numeric value plotted, and <PlotName> is the name of the plot. ForeColor is an Easy-
Language color used for the plot (also referred to as PlotColor), BackColor specifies the
background color (for use only with the OptionStation Position Analysis and RadarScreen
windows), and Width is a numeric value representing the width of the plot. The parameters
<PlotName>, ForeColor, BackColor, and Width are optional.

EasyLanguage for TradeStation Writing Indicators and Studies 151

For a list of the available colors and widths, refer to Appendix B of this book.

Notes:

The BackColor parameter has no effect when plotting the indicator in a price chart window;
however, a value for the parameter is required in order to specify a width, as discussed in
the example.

Example:

Any one or more of the optional parameters can be omitted, as long as there are no other
parameters to the right. For example, the BackColor and Width parameters can be excluded
from a statement as follows:

Plot1(Volunme, “V', Red);
But the plot name cannot be omitted if you want to specify the plot color and width. For

instance, the following example generates a syntax error because the name of the plot state-
ment is expected:

Incorrect:
Plot1(Vol unme, Black, Wite, 2);

Correct:
Plot1(Vol ume, “V', Black, Wite, 2);

The only required parameter for a valid Plot statement is the value to be plotted. So the fol-
lowing statement is valid:

Pl ot 1(Vol une) ;

When no plot name is specified, EasyLanguage uses Plot1, Plot2, Plot3, or Plot4 as the plot
names for each plot. The first plot is named Plot1, the second Plot2, and so on.

Whenever referring to the plot color or width, you can use the word Default in place of the
parameter(s) to have the Plot statement use the default color and/or width selected in the
Properties tab of the Format indicator dialog box.

For example, the following statement will display the volume in the default color but spec-
ifies a specific width:

Plot1(Volunme, “V', Default, Default, 3);

Again, you can use the word Default for the color parameters or the width parameter.

Also, the same plot (i.e., Plot1, Plot2) can be used more than once in an analysis technique;
the only requirement is that you use the same plot name in both instances of the Plot state-
ment. If no name is assigned, then the default plot name is used (i.e., Plot1, Plot2).

For example, if you want to plot the net change using red when it is negative and green
when it is positive, you can use the same plot number (in this case Plotl) twice, as long a
the name of the plot is the same:

152 Writing Indicators and Studies CHAPTER 3

Val uel = Cose - Cose[l];

If Valuel > 0 Then

Plot1(Valuel, “NetChg”, Geen)
El se

Plot1(Valuel, “NetChg”, Red);

In this example, the plot name “NetChg” must be the same in both instances of the Plot
statement.

Note: Once you have defined a plot using the PlotN reserved word, you can reference
the value of the plot simply by using the reserved word, PlotN. In the example below,
the reserved word Plot1 is used to plot the accumulation distribution of the volume. The
value of the plot is referenced in the next statement, in order to write the alert criteria:

Pl ot 1(AccunDi st (Vol une), "AccunDi st")

If [Plotl > H ghest(Plotl, 20) then Alert

SetPlotColor(Number, Color)

This reserved word is used to change the color of a particular plot in a price chart
window.

Syntax:
Set Pl ot Col or (Nunber, Col or);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Color is
the EasyLanguage color to be used for the plot.

For a list of the available colors, refer to Appendix B of this book.

Example:
The following EasyLanguage statements color the plot red when the RSI Indicator is
over 75, and green when it is under 25:

Pl ot 1(RSI (Cl ose, 9), “RSI")
Set Pl ot Col or (1, Default);

If Plotl > 75 Then
Set Pl ot Col or (1, Red);

If Plotl < 25 Then
Set Pl ot Col or (1, Green);

In this example, the RSI Indicator has three possible colors: red when it is over 75,
green when it is below 25, and the default color when it is between 25 and 75. If you

EasyLanguage for TradeStation Writing Indicators and Studies 153

only set two colors, one for over 75 and one for under 25, it would remain one of the
two colors (which ever it was set to last) when it is between 25 and 75.

What you need to do is reset the plot color to a default color every bar so that it is only
red when above 75 and green when below 25. The rest of the time it is the default color.
In this example, we used the SetPlotColor reserved word to reset the plot to the default
color.

You can also set the default color of the plot using the PlotN reserved word. If you set
the default color in the PlotN statement, then you don’t have to use the first
SetPlotColor statement; instead your instructions would be as follows:

Plot1(RSI (Cl ose, 9), “RSI”, Default)

If Plotl > 75 Then
Set Pl ot Col or (1, Red)

If Plotl < 25 Then
Set Pl ot Col or (1, Green) ;

SetPlotWidth(Number, Width)

This reserved word sets the width of the specified plot.

Syntax:
Set Pl ot W dt h(Nunber, Wdth);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Width is
the EasyLanguage width to be used for the plot.

For a list of the available widths, refer to Appendix B of this book.

Example:
The following EasyLanguage statements change the width of the plot to a thicker line
when the Momentum Indicator is over 0, and to a thinner line when it is under 0:

Pl ot 1(Monent un(d ose, 10), “Monentuni)

If Plotl > 0 Then
Set PlotWdth(1, 4);

If Plotl < 0 Then
Set Pl ot Wdth(1, 1);

In this example, the Momentum Indicator has two possible widths: thicker when it is
over 0, and thinner when it is below 0. However, in some cases you will want the
indicator to have three or more possible widths. Please refer to the example for the
previous reserved word, SetPlotColor for a variation on the usage of the SetPlotWidth
reserved word.

154 Writing ShowMe and PaintBar Studies CHAPTER 3

Specifying the Availability of Indicators

When you create an indicator in the EasyLanguage PowerEditor, you are prompted to
specify the windows e.g., price chart, OptionStation Position Analysis window,
RadarScreen window) for which your indicator will be available. By available, we
mean it will appear in the library of indicators to apply when you choose to insert an
indicator into the application.

The choices available to you depend on which TradeStation Technologies product(s)
you purchased. For example, if you purchased ProSuite 2000i, by default, the indicator
is available in TradeStation charts, RadarScreen, and all sections of the Position
Analysis window.

For information on specifying the applications for which your indicator is available,
search the Online User Manual Answer Wizard for the phrase Specifying Applications.

Writing ShowMe and PaintBar Studies

ShowMe and PaintBar studies are somewhat similar to one another, in that both look for
a bar that meets a specific condition and marks the bar if the condition is met. Their
difference lies in the way each study marks the bar: the PaintBar study colors the entire
bar, while the ShowMe studies typically place a mark above or below the bar.

A ShowMe study is best used when the objective of the analysis is to find a criteria that
normally happens once every certain number of bars. A mark (usually a round dot) is
placed above or below these bars. The intention of the ShowMe study is to save you the
work of scrolling through the chart looking for bars that meet a certain criteria.

A PaintBar study is best used to highlight when a market enters a certain mode or trend.
In other words, it is best used in order to highlight an event that happens for a number of
consecutive bars. For example, in Figure 3-18, we see how a ShowMe study is used to

EasyLanguage for TradeStation Writing ShowMe and PaintBar Studies 155

find all Bullish Key Reversal bars, and a PaintBar study is used to find whenever the
momentum of the symbol is positive.

".—i,:-f TladeSlalan Chart - (IBM) Intemational Business Machines Corp LAST-Da... =] 3
! 1 -Daily UBJ'Z!EHQQQ } ! I||0:122.12!5 :::: EEE
: . : : : IiI"ll th]: II H130.000
el R
! ! | g ! !
- N IR L Lo R
B LTRR AN I A
B LU TR R O T O
N Lo
NI L 1 UL R O O o
It i\ i i | i o | i i s
Wl e
= i o i m . apr May Uun "l 'hug)

Figure 3-18. ShowMe and Paintbar studies

ShowMe Studies

To write ShowMe studies, you use the PlotN reserved word described on page 150 but
instead of plotting a value for every tick or bar, you specify the conditions under which
you want the Plot statement to be executed using an IF-THEN statement. Also, instead
of specifying the value to plot, you specify the value on the bar at which to place the
mark when the conditions are met (for example, the high, low, open, close, or any other
numeric value).

Below is an example of the Outside Bar ShowMe study, which places a mark at the
high of the bar when the high is higher than the previous high and the low is lower than
the previous low:

If High > H gh[1] AND Low < Low 1] Then
Pl ot 1(Hi gh, “Qutside Bar”) ;

In the above example, we specified only the value at which to place the mark, in this
case, the high price of the bar, and we named the plot Outside Bar. We could also
specify the color of the mark and the width, or thickness, of the mark, as described in
the discussion of the reserved word PlotN.

When working with ShowMe studies, you have an additional reserved word available
to you, NoPlot.

156

Writing ShowMe and PaintBar Studies CHAPTER 3

NoPlot(Num)

This reserved word removes the specified plot from the current bar in the price chart.

Syntax:
NoPl ot (Num

Parameters: . . .
Num is a numeric expression representing the number of the plot to remove.

Notes:

This reserved word is useful when collecting data on a real-time/delayed basis and you
have the Update Every Tick check box selected for the ShowMe study. If the ShowMe
study condition becomes true during the bar, but is not true at the end of the bar, the
mark is removed. If you do not use this reserved word, the mark would be placed on
the bar when the condition became true and left there even when the condition was no
longer true.

'Er)r(lgr?gllféwing ShowMe study marks the low of a gap down bar, but removes the mark
if the condition is no longer true for the bar:
If High < Low of 1 Bar Ago Then
Pl ot 1(Low, “GapDown”)
El se
NoP! ot (1)

PaintBar Studies

To write PaintBar studies, you use the reserved words described next.

PlotPaintBar(BarHigh, BarLow , "*PlotName**, ForeColor, BackColor, Width)

This reserved word is used only within a PaintBar study, and enables you to paint the
entire bar a specified color or paint the bar between two specified values.

Syntax:
Pl ot Pai nt Bar (Bar Hi gh, BarLow [, BarOpen [, Bard ose

[, "<PlotNane>"[, ForeColor[, BackColor[, Wdth]]111]);

Parameters:

BarHigh, BarLow, BarOpen and BarClose are numeric expressions representing the
high, low, open and closing prices for the bar to be drawn by the PaintBar study, and
<PlotName> is the name of the plot. ForeColor is an EasyLanguage color that will be used
to paint the bar, BackColor is an EasyLanguage color that is currently not used, and Width
is a numeric value representing the width of the plot.

EasyLanguage for TradeStation Writing ShowMe and PaintBar Studies 157

Notes:
You can also specify only two of the bar parameters instead of the four: BarHigh, BarLow,
BarOpen or BarClose. However, you must specify either two or four of the bar parameters.

The parameter BackColor currently has no effect on a chart; however, you do need to in-
clude it in the statement when you want to specify Width.

You can abbreviate the PlotPaintBar reserved word to PlotPB. Also, you can use the
PlotN reserved word described previously to write a PaintBar study; however, we rec-
ommend you use the PlotPaintBar reserved word.

For a list of the available colors and widths, refer to Appendix B of this book.

Example:
For example, the following instructions can be used in order to paint red the bars with
twice the 10-bar average of the volume:
If Volume > 2 * Average(Vol une, 10) Then
Pl ot PB(Hi gh, Low, Open, Cose, "AvgVol", Red);

The following instructions paint the area between the two plots of the Bollinger Bands
Indicator when the 14-bar ADX value is lower than 25:

Vari abl es: Top(0), Botton{0);

Top = Bol |'i nger Band(Cl ose, 14, 2);
Bott om = Bol | i nger Band(C ose, 14, -2);

If ADX(14) < 25 Then
Pl ot Pai nt Bar (Top, Bottom “Area”, Blue);

In this last example, notice that although we omitted the BarLow and BarClose
parameters, we are still able to specify the name and color of the plot. We applied this
PaintBar study to a chart and formatted it to use a dotted line. The result is shown in
Figure 3-19.

158

Writing ShowMe and PaintBar Studies CHAPTER 3

DELL LAST- Dally 08131/1989 O=46.063 H=46.500 L=45.813 V‘QSMDDD ty PB
| |

'|ll}|! i !

. I by i
" iﬂ'lﬂﬁ“ N '*} .lnunw ‘H‘

: : I|| ||| ||II II |I|

i i

i | |h -35.000

O L
lm i *"“""I‘H‘ i H*‘fflhn" !
l | I|' | it

H\ th e

|

= O ™ D 99 F il A 1] J

L4 n 1]

Figure 3-19. Use of a PaintBar study to shade an area of the chart

l‘ IN |' '
'n il

| F30.000

© 26,000

NoPlot(Num)

This reserved word removes the specified plot from the current bar in the price chart.

Syntax:
NoPl ot (Num)

Parameters:)))
Num is a numeric expression representing the number of the plot to remove.

Notes:

This reserved word is useful when collecting data on a real-time/delayed basis and you
have the Update Every Tick check box selected for the PaintBar study. If the PaintBar
study condition becomes true during the bar, but is not true at the end of the bar, the
plot is removed from that bar. If you do not use this reserved word, the bar is painted
when the condition becomes true and remains painted even when the condition is no
longer true.

Example:

The following PaintBar study paints the bars while the close is less than the 10-bar
average of the close, but removes the plot from the current bar if the condition is no
longer true:

EasyLanguage for TradeStation Writing ProbabilityMap Studies 159

If O ose < Average(Cl ose, 10) Then

Pl ot Pai nt Bar (Hi gh, Low, “Price<BarAvg”)
El se

NoPl ot (1) ;

A PaintBar study uses one plot for two parameters; therefore, to remove the above plot, you
need to use one NoPlot statement, as shown above. If you use four price parameters with
the PlotPaintBar reserved word, then you use two NoPlot statements to remove the plot,

NoPlot(1) and NoPlot(2).

Writing ProbabilityMap Studies

ProbabilityMap studies create a ‘drawing area’ to the right of any bar clicked in the charting
application. They are most commonly used to show the most probable path, or area where
the symbol will move to in the future. An example of this is show in Figure 3-20.

!

! I14.000

1

i F1z.000
Ii . i 10,000

'”'T“J te.000

hl'mll‘h“

Ji

i\ “}”l

I i
I

Thll;e

|

™

A
H”“” |

Fa.000

i, |
’ii‘ | I,T,j .

l

2.000

|
|

Gg Fel Mar Bpr My Jun i Bug

L«] e

Figure 3-20. A ProbabilityMap study attempting to forecast future market activity.

You can also base ProbabilityMap studies on other analysis techniques, thereby providing
a forecast of values based on the analysis technique.

However, this is not the only use for ProbabilityMap studies, as the analysis technique
provides a canvas on which you can draw any pattern or figure.

As mentioned above, when creating a new ProbabilityMap study, your first task is to define
the drawing area. This area is rectangular and divided into a grid with rows and columns.
As illustrated in Figure 3-21, the number of rows is defined by a top and bottom price, and
a row height, and the number of columns defined as a number of bars. You set these values
using reserved words.

When the grid is initially created, it contains zeros (0) in all cells. Therefore, after you de-
fine the drawing area, you should assign a number between 0 and 100 to each one of the

160

Writing ProbabilityMap Studies CHAPTER 3

cells in the grid. This number reflects the probability that the price (or value) will reach that
particular cell.

"._i,:' TradeStation Chart - [CSCO0) Cisco Systems Inc LAST-Daily _ |O0] I

CECO LAST-Daily 10/0711998 C©=71.438 -484 -067% H=73.188 L=71.438 ¥=2154800
Fa0.000

Fa4.000

Fa0.000

Rows L75.000

i Expressed as
11”}] ul \H paints

F70.000

l} FES.000

Columns

Expressed as bars

IAug 'Sep IO ct IN oy IDec 'DD 'Fetu

Kl 1>
Figure 3-21. ProbabilityMap Study drawing area

’ F60.000

As explained above, when creating a ProbabilityMap study, a rectangular area is created
and divided into a grid with a specified number of rows and columns. Each one of the cells
in this grid is assigned a value from 0 to 100, representing the probability that the price will
reach that cell. When the ProbabilityMap study is applied to price chart, a color is assigned
to each cell of the drawing area, thereby creating the ProbabilityMap graph.

As shown in Figure 3-22, there are three available patterns: fire, smoke, and fade. You
specify the pattern using the Properties tab in the Format dialog box.

Ll

Fda

1) = T
WELLE

Figure 3-22. ProbabilityMaps color patterns
When creating ProbabilityMap studies, it is important to know that they are evaluated the

same way as other analysis techniques (and as is explained in Chapter 2, “The Basic Ele-
ments of EasyLanguage”); however, they do not take into account all the bars on the price

EasyLanguage for TradeStation Writing ProbabilityMap Studies 161

chart, as do other analysis techniques. They take into account only however many bars are
specified by the MaxBarsBack setting.

For instance, if 50 bars are specified in the MaxBarsBack setting, and we place our Proba-
bilityMap pointer on the 53rd bar of the price chart, the ProbabilityMap study begins cal-
culating on the 50th bar of the chart, and so on until the 53rd bar until it displays the
drawing area. However, if we place our pointer on the 100th bar of the price chart, the Prob-
abilityMap study will begin calculating on the 51st bar of the chart and so on until the most
recent bar, at which point it will display the drawing area (the drawing area is actually cre-
ated for each of the 50 bars, however, it is displayed for one bar at a time, that is why it is
visible only on the selected bar).

This is illustrated in Figure 3-23.

"._,:' TradeStation Chart - [C5C0) Cizco Systems Inc LAST-Daily

CECO LAST-Daily 10071999 C©=71.438 -.484 -067% H=73.188 L=71.438
F90.000

F856.000

Study only evaluated for
MaxBarsBack bars F80.000

——

F7a.000

F70.000

I|“||lr Um S—

F65.000

[IIrI |
|| H”’ “l”m”l[l" “ﬂhlf

F60.000

Jtll]
| M
H|

||th|1 ”l ’|

A " J J A S 0 il

<] I

Figure 3-23. ProbabilityMap studies calculate only on the last MaxBarsBack of the chart

F50.000

As with any trading strategy or analysis technique, you must specify the number of bars to
use in the Maximum Number of Bars study will reference box (MaxBarsBack).

The reserved words available for the use of ProbabilityMap studies are divided into two
groups: set reserved words and get reserved words. The set reserved words are used to de-
fine the properties of the ProbabilityMap studies and to draw the graph itself. The get re-
served words, on the other hand, are used to read the values of an existing ProbabilityMap
study or other analysis techniques applied to the price chart.

162 Writing ProbabilityMap Studies CHAPTER 3

Set Reserved Words

To create a ProbabilityMap, you will use all the ProbabilityMap set reserved words.
These words define the size and properties of the ProbabilityMap study drawing area.

PM_SetHigh(Num)

This reserved word specifies the upper boundary of the ProbabilityMap area. The
ProbabilityMap is not drawn above the value specified.

Syntax:
PM_Set Hi gh(Num)

Parameters:
Num is a numeric expression representing the upper boundary of the ProbabilityMap.
study.

Example:
The following statement sets the upper boundary of the ProbabilityMap study to a value of
the close plus three times the range of the current bar:

PM Set H gh(Cl ose + (Range * 3));
PM_SetLow(Num)

This reserved word specifies the lower boundary of the ProbabilityMap area. The
ProbabilityMap is not drawn below the value specified.

Syntax:
PM_Set Low(Num

Parameters:
Num is a numeric expression representing the lower boundary of the ProbabilityMap.

Example:
The following statement sets the lower boundary of the ProbabilityMap study to the a value
equal to the lowest low of the last 20 bars:

PM_Set Low(Lowest (Low, 20)) ;
PM_SetNumColumns(Num)
This reserved word is used to determine the number of columns inside the ProbabilityMap

drawing area. The ProbabilityMap is not drawn past the number of bars specified.

Syntax:
PM_Set NunCol urms(Num)

Parameters:
Num is a numeric expression representing the maximum number of bars to the right of
the current bar that the ProbabilityMap is to be drawn.

EasyLanguage for TradeStation Writing ProbabilityMap Studies 163

Example:
The following statement defines the ProbabilityMap study drawing area to 50 bars:

PM_Set NuntCol utms(50) ;

You can use the following expression to set the ProbabilityMap drawing area to have as
many columns as bars to the right available in the chart:

PM_Set NuntCol urms(MaxBar sFor war d) ;
PM_SetRowHeight(Num)

This reserved word is used to specify (in points) the height of each row of the
ProbabilityMap drawing area.

Syntax:
PM_Set RowHei ght (Num)

Parameters:)))]
Num is a numeric expression representing the row height.

Notes:
The row height of the drawing area is usually specified as:

(ProbabilityMap Upper Boundary - ProbabilityMap Lower Boundary) / Number of Rows

So, for instance, if the difference between the upper and lower boundaries of the Probabil-
ityMap is 50, and you want 100 rows, the row height must be 0.5. The more rows there are
in the ProbabilityMap, the better ‘resolution’; in other words, the grid cells are smaller and
the resulting graph appears smother and more detailed. However, it takes more time to
draw, as there are more cells to calculate and for which to draw ProbabilityMap values.

Example:
If you want to have 50 rows in the ProbabilityMap, the following instructions specify the
appropriate row height:

PM_Set RowHei ght ((PM_High - PM Low) / 50);
PM_SetCellValue(Column, Price, Value)

This reserved word is used to set the value of an individual cell in the ProbabilityMap
drawing area.

Syntax:
PM Set Cel | Val ue(Col utm, Price, Val ue)

Parameters:

Column, Price, and Value are numeric expressions. Column and Price are the column and
the row of the drawing area, respectively, and Value is a numeric expression between 0
and 100 that colors that particular cell according to the color patterns shown in Figure 3-
22.

164 Writing ProbabilityMap Studies CHAPTER 3

Example:
The following statement sets the cell in the column corresponding to the close of the last

bar on the chart (the first bar in the ProbabilityMap drawing area) to a value of 100:
PM Set Cel | Val ue(1, C ose, 100);

Get Reserved Words

The get reserved words enable trading strategies, analysis techniques, and functions to
read information from the ProbabilityMap study.

PM_Low

This reserved word returns a numeric value representing the lower boundary of the
ProbabilityMap study drawing area. This value is important to ensure that you don’t
query values outside of the ProbabilityMap study drawing area.

Syntax:
PM_Low

Parameters:
None

Example:
The following statement checks whether or not a particular value is inside the upper and

lower boundaries of the ProbabilityMap study drawing area before assigning a color
value to a cell:
If Valuel >= PM Low AND Val uel <= PM H gh Then
PM Set Cel | Val ue(1, Valuel, 100);

PM_High

This reserved word returns a numeric value representing the upper boundary of the
ProbabilityMap study drawing area. This value is important to ensure that you don’t
query the values outside of the ProbabilityMap study drawing area.

Syntax:
PM _Hi gh

Parameters:
None

Example:
The following statement checks whether or not a particular value is inside the upper and

lower boundaries of the ProbabilityMap study drawing area before assigning a color
value to a cell:
If Valuel >= PM Low AND Val uel <= PM H gh Then
PM Set Cel | Val ue(1, Valuel, 100);

EasyLanguage for TradeStation Writing ProbabilityMap Studies 165

PM_GetRowHeight

This reserved word returns numeric value representing the height (in points) of the cells
of the ProbabilityMap study drawing area.

Syntax:
PM_Get RowHei ght

Parameters: . . .
None. To obtain the value returned by this reserved word, you can assign the value to a

numeric variable, for example, Valuel.

Notes:
This value should be used as an increment when traversing the ProbabilityMap study

drawing area.

Example:
The following loop traverses the first column of the ProbabilityMap study drawing area:

Val uel = PM Low,

Wil e Valuel < PM Hi gh Begin

{ EasylLanguage instructions }

Val uel = Val uel + PM Get RowHei ght;
End;

PM_GetNumColumns

This reserved word returns a numeric value representing the number of columns of the
ProbabilityMap study drawing area.

Syntax:
Val uel = PM Get NunCol umrms

Parameters: _)
None. To obtain the value returned by this reserved word, you can assign the value to a

numeric variable, for example, Valuel.

Example:
The following loop traverses a row of the ProbabilityMap study drawing area from the

first to the last column:
For Valuel = 1 To PM CGet NunCol unms Begi n
{ EasylLanguage instruction(s) }
End;

166 Writing ActivityBar Studies CHAPTER 3

PM_GetCellValue(Column, Price)

This reserved word returns the number corresponding to the value of the specified cell of
the ProbabilityMap study drawing area. The number returned by this reserved word is
between 0 and 100, corresponding to the color patterns shown in Figure 3-22.

Syntax:
Val uel = PM Get Cel | Val ue(Col umm, Price)

Parameters:

Column and Price are numeric expressions representing the cell in the ProbabilityMap
study drawing area for which you want to obtain the value. To obtain the value returned by
this reserved word, you can assign the value to a numeric variable, for example, Valuel.

Example:
The following statement obtains the value of the cell in the lower left corner of the Proba-
bilityMap study drawing area:

Val uel = PM Get Cel | Val ue(1, PM Low);

Writing ActivityBar Studies

ActivityBar studies provide you with the ability to show trading patterns that occur within
a range of bars on a chart. Unlike other indicators or studies, which consist of lines drawn
between price points or that plot symbols above or below a bar, ActivityBar studies produce
a series of cells to the right or left of a bar that show additional information about the trading
activity within each bar.

ActivityBar studies break down each bar into smaller bars by adding cells to the right or
left of the bar following the EasyLanguage instructions provided in the ActivityBar study.
When writing new ActivityBar studies in the PowerEditor, it is helpful to think of the stud-
ies as multi-data analysis techniques, where the two data streams are for the same symbol,
but one data stream has a finer resolution (smaller data compression) than the other and is
placed in a hidden subgraph.

All the EasyLanguage instructions are evaluated on the hidden data stream, referred to as
the ActivityData data stream, and the resulting cells are added to the visible bars.

When creating an ActivityBar study, only two instructions are necessary. The first is the
instruction that defines the height of the cells, which is determined on a bar-by-bar basis.
The other is the instruction or criteria that determines whether or not a cell is added.

You can also define and draw a zone around the ActivityBar study cells. You can draw this
zone to the left, right, or on both sides of the bar. The EasylLanguage instructions define the
upper and lower boundaries for the left and right zone separately, the width is automatically
determined by the longest row of cells. For example, if the longest row has 35 cells, the
zone is drawn wide enough to include all 35 cells.

EasyLanguage for TradeStation Writing ActivityBar Studies 167

You can also draw an arrow or pointer to highlight a specific price of the bar. You can draw
this arrow on the left or right side of the bar (or both). By default, these pointers are drawn
on the open and closing prices of the bar.

The ActivityBar study reserved words can be divided into three groups: 1) reserved words
used to set the properties of the ActivityBar study, 2) get keywords used to obtain informa-
tion on an existing ActivityBar study, and 3) other reserved words that are not necessary to
when creating ActivityBar studies, but are helpful when working with them. Reserved
words in the first two groups, set and get, are described next. For information on reserved
words in the third group, refer to the Reserved Word Library in the Online User Manual.

Set Reserved Words

There are many ActivityBar study reserved words, but only two are required to write
an ActivityBar study: AB_AddCell and AB_SetRowHeight. These and the other set
reserved words for ActivityBar studies are discussed next.

AB_AddCell(Price, Side, Str_Char, Color, Value)

This reserved word is used to add a cell to the current bar of the chart. You can only add
cells to the bar currently being analyzed (e.g., AB_AddCell(...)[1] is not allowed). This re-
served word must be included in an ActivityBar study.

Syntax:
AB_AddCel | (Price, Side, Str_Char, Color, Value)

Parameters:)) .)))
Price is a numeric expression representing the price value at which the cell is added. It can
be any value inside or outside the range of the bar.

Side specifies the side of the bar on which the cell is placed, and it accepts one of two re-
served words, LeftSide or RightSide.

Str_Char is the text string expression representing the text stored in the cell being added.
The expression is limited to one character. If the text string expression is longer than one
character, only the first character is used (e.g., if you use the text string expression “High”
the letter “H” is placed in the cell).

Color is the EasyLanguage color or its numeric equivalent representing the color in which
the cell is drawn. For a list of the available colors, see Appendix B of this book.

Value is a numeric expression stored in the cell. This value is required; however, it does not
affect the calculation of the ActivityBar study, and is solely for your use. You can refer to
the value later from the ActivityBar study itself or from other analysis techniques that ref-
erence the ActivityBar study. Use zero (0) for this parameter if you do not want to specify
a meaningful value.

Notes:
When writing an ActivityBar study, you must also specify the cell height. To do so, use
the reserved word AB_SetRowHeight, described next.

168 Writing ActivityBar Studies CHAPTER 3

Example:
The following statement adds a green cell to the right side of the bar for every tick. Each
cell contains the letter A, and stores the trade volume for the tick in each cell:

AB_AddCel | (Ol ose of ActivityData, RightSide, “A’, Geen,
Vol une of ActivityData);

AB_SetRowHeight(Value)

This reserved word is used to define the height of each cell (row) on a bar-by-bar basis;
it is required when writing an ActivityBar study.

Syntax:
AB_Set RowHei ght (Val ue)

Parameters: _)) _
Value is a numeric expression representing the row height.

Notes:

You want the row height to be dynamic because symbols vary greatly in price from one
symbol to another. For example, a row height of 0.25 will work nicely if the instrument is
trading at $50, but it will be an enormous row height for a penny stock trading at $1 per
share. Also, the trading range for a symbol can change significantly during a span of several
years (e.g., a stock adjusted for several stock splits), and an appropriate row height for to-
day may not work well in the past or the future. The built-in ActivityBar studies use the
reserved word AB_RowCalc as the parameter for this reserved word to calculate a dynamic
row height.

When writing an ActivityBar study, you must also use the AB_AddCell reserved word
(discussed previously) to add cells.

Example:
The following statement sets the row height to 1/20th of the average range of the last 10
bars. The result is approximately 20 rows of cells per bar:

AB_Set RowHei ght (Aver age(Range, 10) / 20);
AB_SetZone(HighVal, LowVal, Side)

This reserved word defines the properties of the ActivityBar study zone.

Syntax:
AB_Set Zone(Hi ghVal , Lowval , Side)

Parameters:

HighVal and LowVal are numeric expressions representing the upper and lower
boundaries of the ActivityBar study zone, respectively. Side is one of two reserved
words LeftSide or RightSide, which specifies the side of the bar on which the zone is
drawn.

EasyLanguage for TradeStation Writing ActivityBar Studies 169

Notes:
The zone is drawn on every bar using the same drawing properties (color and thickness) of

the bars, and is wide enough to fit the widest row of cells of that bar. The ActivityBar study
zone is not drawn if there are no cells for a bar.

Example:
The following statements draw the ActivityBar study zone to the left of each bar at one

standard deviation above and below the median price of the ActivityBar cells:
Val uel = AB_Medi an(Ri ght Si de) ;
Val ue2 = AB_StdDev(1l, RightSide);
AB_Set Zone(Val uel + Value2, Valuel - Value2, RightSide);

The above example uses the reserved words AB_Median and AB_StdDev. These
reserved words are described in Appendix C, “Reserved Words Quick Reference,” as
well as the Online User Manual.

AB_SetActiveCell(Price, Side)

ActivityBar studies display price markers on each bar on the chart. By default, these
markers are drawn at the open (left side) and closing prices (right side). This reserved word
overrides the default placement of these markers, allowing you to place them at any
location on the bar.

Syntax:
AB_Set ActiveCel |l (Price, Side)

Pag’am_eters:
Price is a numeric expression representing the price at which you want to place the marker,

and Side defines the marker to move (left or right). Side only accepts one of two reserved
words, LeftSide or RightSide.

Example:
The following statements place the right side marker at the modal cell of the ActivityBar

study:
Val uel = AB_Mbde(Ri ght Si de);
AB_Set Acti veCel | (Val uel, Ri ghtSide);

AB_RemoveCell(Price, Offset, Side)

This reserved word is used to remove a cell from the current bar of an ActivityBar study.

Syntax:
AB_RenoveCel | (Price, Ofset, Side)

Parameters:)) _ _ _
Price is a numeric expression representing the price of the row from which the cell is to be

removed. Offset is the column number of the cell to be removed (where column 1 is the
closest to the bar), and Side specifies the side of the bar on which the cell is located (you
must use one of two reserved words, LeftSide or RightSide, to specify the side).

170 Writing ActivityBar Studies CHAPTER 3

Notes:
If the specified cell does not exist, the ActivityBar study generates a run time error with the

message “ActivityBar tried to reference an empty row.”

Example:
The following statement removes the last cell on the right side of the bar, from the row cor-
responding to the close of the bar:

Val uel = AB_Get NuntCel | s(C ose of Datal, RightSide);
AB_RenoveCel | (Cl ose of Datal, Valuel, RightSide);

This example uses the reserved word AB_GetNumcCells to obtain the number of cells
on the right side of the ActivityBar, and then uses the value obtained as the Offset
parameter for AB_RemoveCell.

Get Reserved Words

Using the reserved words described in this section, you can reference information on
existing ActivityBar study cells from any other analysis technique, trading strategy, or
function.

AB_GetCellChar(Price, Side, Offset)

This reserved word returns the text string expression held by the specified cell.

Syntax:
AB_GCet Cel | Char (Price, Side, Ofset)

Parameters:))) _ -
Price is a numeric expression representing the price of the cell referenced. Side specifies

the side of the bar on which the cell is located (you must use one of two reserved words,
LeftSide or RightSide, to specify the side), and Offset is the column number of the cell ref-
erenced (where column 1 is the closest to the bar).

Notes:
You can use this reserved word in an ActivityBar study as well as any other analysis

technique, trading strategy, or function. To store the text string expression returned by
the reserved word, you can assign this reserved word to a text string variable. If you
reference a cell that does not exist, a runtime error will occur.

Example:
The following statements retrieve the text string expression held in the first cell of the row

corresponding to the closing price of the current bar:
Variable: Str(“ ");

Str = AB_Get Cel | Char(C ose of datal, LeftSide, 1);

EasyLanguage for TradeStation Writing ActivityBar Studies 171

AB_GetCellColor(Price, Side, Offset)

This reserved word returns a number representing the color used to draw the specified cell.

Syntax:
AB_Cet Cel | Col or (Price, Side, Ofset)

Parameters:

Price is a numeric expression representing the price of the cell referenced. Side specifies
the side of the bar on which the cell is located (you must use one of two reserved words,
LeftSide or RightSide, to specify the side), and Offset is the column number of the cell ref-
erenced (where column 1 is the closest to the bar).

Notes:

To store the number returned by the reserved word, you can assign this reserved word
to a numeric variable. The numeric value returned is the EasylL anguage humeric equiva-
lent used to specify colors. For a list of the available colors, refer to Appendix B of this
book. You can use this reserved word in an ActivityBar study as well as any other anal-
ysis technique, trading strategy, or function. If you reference a cell that does not exist,
a runtime error will occur.

Example:
The following statement retrieves the color of the first cell on the right side located at the
opening price of the bar. The color is assigned to the variable Valuel:

Val uel = AB_GCet Cel | Col or (Open of Datal, RightSide, 1);

AB_GetCellDate(Price, Side, Offset)

Each time a cell is added to a bar, the date and time of when it was added is stored with the
cell. This reserved word returns the EasylLanguage date corresponding to the date the cell
was added to the bar.

Syntax:
AB_Cet Cel | Date(Price, Side, Ofset)

Parameters:

Price is a numeric expression representing the price of the cell being referenced. Side spec-
ifies the side of the bar on which the cell is located (you must use one of two reserved
words, LeftSide or RightSide, to specify the side), and Offset is the column number of the
cell referenced (where column 1 is the closest to the bar).

Notes:

To store the date returned by the reserved word, you can assign this reserved word to
a numeric variable. You can use this reserved word in an ActivityBar study as well as
any other analysis technique, trading strategy, or function. If you reference a cell that
does not exist, a runtime error will occur.

172 Writing ActivityBar Studies CHAPTER 3

Example:
The following statement retrieves the date of the first cell on the right side at the opening

price of the bar, and assign this date to the numeric variable Valuel:
Val uel = AB_GCet Cel | Dat e(Open of Datal, RightSide, 1);

AB_GetCellTime(Price, Side, Offset)

Each time a cell is added to a bar, the date and time of when it was added is stored with the
cell. This reserved word returns the time that the cell was added to the bar.

Syntax:
AB _Get Cel | Time(Price, Side, Ofset)

Parameters:

Price is a numeric expression representing the price of the cell being referenced. Side spec-
ifies the side of the bar on which the cell is located (you must use one of two reserved
words, LeftSide or RightSide, to specify the side), and Offset is the column number of the
cell referenced (where column 1 is the closest to the bar).

Notes:

To store the time returned by the reserved word, you can assign this reserved word to
a numeric variable. You can use this reserved word in an ActivityBar study as well as
any other analysis technique, trading strategy, or function. If you reference a cell that
does not exist, a runtime error will occur.

Example:
The following statement retrieves the time of the first cell on the right side at the opening

price of the bar, and assigns this date to the numeric variable Valuel:
Val uel = AB_GCet Cel | Dat e(Open of Datal, RightSide, 1);

AB_GetCellValue(Price, Side, Offset)

When you add a cell to a bar using the AB_AddCell reserved word, you can store a value in
the cell. You use the AB_GetCellValue reserved word to obtain the value.

Syntax:
AB_Get Cel | Val ue(Price, Side, Ofset)

Parameters:

Price is a numeric expression representing the price of the cell being referenced. Side spec-
ifies the side of the bar on which the cell is located (you must use one of two reserved
words, LeftSide or RightSide, to specify the side), and Offset is the column number of the
cell referenced (where column 1 is the closest to the bar).

Notes:
To store the value returned by the reserved word, you can assign this reserved word to

a numeric variable. You can use this reserved word in an ActivityBar study as well as
any other analysis technique, trading strategy, or function. If you reference a cell that
does not exist, a runtime error will occur.

EasyLanguage for TradeStation Writing ActivityBar Studies 173

Example:
The following statement retrieves the value stored in the first cell on the right side at the
opening price of the bar, and assigns this value to the numeric variable Valuel:

Val uel = AB_GCet Cel | Val ue(Open of Datal, RightSide, 1);
AB_GetNumCells(Price, Side)

This reserved word returns the number of cells in a specified row.

Syntax:
AB_GCet NuntCel | s(Price, Side)

Parameters:
Price is a numeric expression representing the price of the row being referenced, and Side
specifies the side of the bar (Side accepts one of two reserved words, LeftSide or RightSide).

Notes:

If you reference any attribute of a non-existent cell, a run time error is generated by the
ActivityBar study when applied to a chart. For example, if at price 100 there are 5 cells to
the right of the bar, and the study attempts to obtain the color of cell number 6, an error is
generated and the study is turned off. You can avoid these errors by using the
AB_GetNumCells reserved word to determine the number of available cells before attempt-
ing to reference any of them.

To store the resulting value, you can assign this reserved word to a numeric variable. You
can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function.

Example:

The f(?llowing statements obtain the text string expression stored in the last cell in the row
corresponding to the open of the bar. Notice that we first obtain the total number of cells in
the desired row, and store this number in the variable Valuel. We then use the resulting
number (Valuel) to obtain the text string expression:

Variable: Str(“ ");

Val uel = AB_Get NunCel | s(Open of Datal, RightSide);

Str = AB_Get Cel | Char (Open of Datal, Valuel, RightSide);
AB_GetZoneHigh(Side)
This reserved word returns a numeric value representing the upper boundary of the

ActivityBar study zone.

Syntax:
AB_Cet ZoneHi gh(Si de)

Parameters:
Side specifies the side for which to obtain the value. Side accepts one of two reserved
words, LeftSide or RightSide.

174 Writing ActivityBar Studies CHAPTER 3

Notes:
To store the resulting value, you can assign this reserved word to a numeric variable. You

can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function.

Example:
The following statement assigns the high price of the ActivityBar zone to the numeric

variable Valuel:

Val uel = AB_GCet ZoneH gh(Ri ght Si de);
AB_GetZoneLow(Side)

This reserved word returns a numeric value representing the lower boundary of the
ActivityBar study zone.

Syntax:
AB_Cet ZoneLow(Si de)

Parameters:
Side specifies the side for which to obtain the value. Side accepts one of two reserved

words, LeftSide or RightSide.

Notes:
To store the resulting value, you can assign this reserved word to a numeric variable. You

can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function.

Example:
The following statement assigns the high price of the ActivityBar zone to the numeric
variable Valuel:

Val uel = AB_GCet ZoneLow Ri ght Si de) ;
AB_High

This reserved word returns a numeric value representing the highest price on the bar at
which a cell is drawn.

Syntax:
AB_Hi gh

Parameters:
None.

Notes:
If no cells are drawn, a value of zero (0) is returned. To store the resulting value, you can

assign this reserved word to a numeric variable. You can use this reserved word in an
ActivityBar study as well as any other analysis technique, trading strategy, or function.

EasyLanguage for TradeStation Writing ActivityBar Studies 175

Example:
The following statements use a While loop to traverse all the possible cells:

Val uel = AB_Hi gh;

Wil e Valuel > AB_Low Begin
{ EasylLanguage Instruction(s) }
Val uel = Val uel - AB_Get RowHei ght;
End;

First, we use AB_High to obtain the highest price at which a cell is drawn, and we
assign this value to Valuel. In each iteration of the While loop, we subtract the value
equal to one row (which we obtain using AB_GetRowHeight). The loop continues as
long as Valuel is greater than the lowest price on the bar at which a cell is drawn.

AB_Low

This reserved word returns a numeric value representing the lower of two values: the
lowest price of the bar on which the ActivityBar study is applied, or the lowest price
on the bar at which a cell is drawn.

Syntax:
AB Low

Parameters:
None.

Notes:

If no cells are drawn, a value of zero (0) is returned. To store the resulting value, you can
assign this reserved word to a numeric variable. You can use this reserved word in an
ActivityBar study as well as any other analysis technique, trading strategy, or function.

Example:
The following statements use a While loop to traverse all the possible cells:

Val uel = AB_Low,

Wil e Valuel < AB_Hi gh Begin
{ EasylLanguage Instruction(s) }
Val uel = Val uel + AB_Get RowHei ght ;
End;

First, we use AB_Low to obtain the lowest price at which a cell is drawn, and we assign
this value to Valuel. In each iteration of the While loop, we add the value equal to one
row (which we obtain using AB_GetRowHeight). The loop continues as long as Valuel
is less than the highest price on the bar at which a cell is drawn.

176

Writing ActivityBar Studies CHAPTER 3

Other Reserved Words Related to ActivityBar Studies

The following is a list of reserved words you can use when writing ActivityBar studies.

ActivityData

This reserved word is a data alias used to reference the hidden data stream used by the
ActivityBar study. When you want to refer to the ActivityBar data stream, and the

reserved word that you are using is not an ActivityBar-related reserved word (thereby
referencing the ActivityBar study data stream by default), you must use this data alias.

Syntax:
. of ActivityData

Parameters:
None.

Notes:
The reserved word Of is used with ActivityData to make it easier to read.

Example:
The following statement calculates the average of the last 10 closing prices of the

ActivityBar study data stream. For instance, assume the ActivityBar study uses a data
compression of 30 minutes and is applied to a daily chart. In this case, the statement
calculates the average of the last ten 30-minute bars:

Val uel = Average(Cd ose, 10) of ActivityData,;
BarStatus(DataNum)

It can be very useful to know when the ActivityBar study is being called for the last
trade of a particular bar, or when the ActivityBar study is being read for a trade ‘inside
the bar’. This reserved word obtains this information.

Syntax:
Bar St at us(Dat aNum)

Parameters: .))))
DataNum is a numeric expression representing the data stream that is being evaluated,
and can be between 1 and 50, inclusive.

Notes:
This reserved word will return one of four possible values:

m 2 =the closing tick of a bar

m 1 =atick within a bar

m 0 =the opening tick of a bar

m -1 =an error occurred while executing the reserved word

EasyLanguage for TradeStation Writing ActivityBar Studies 177

'Er)ﬁzn;gllféwing statements reset the numeric variable Valuel to 0 when the bar to which
the ActivityBar study is applied is closed:
If BarStatus(1l) = 2 Then
Valuel = 0
El se
Val uel = Valuel + 1;

LeftSide

This reserved word is used with the other ActivityBar reserved words to specify the
side of the ActivityBar you want to reference. It specifies that you are referencing the
left side of the bar.

Syntax:
Left Si de

Parameters:
None.

Example:
The following statement obtains the number of cells on the left side of a bar, for the
row corresponding to the closing price:

Val uel = AB_Get NunCel | s(C ose of Datal, LeftSide);
RightSide

This reserved word is used with the other ActivityBar reserved words to specify the
side of the ActivityBar you want to reference. It specifies that you are referencing the
right side of the bar.

Syntax:
Ri ght Si de

Parameters:
None.

Example:
The following statement obtains the number of cells on the right side of a bar, for the
row corresponding to the open price:

Val uel = AB_Get NunCel | s(Open of Datal, RightSide);

178 Writing ActivityBar Studies CHAPTER 3

CHAPTER 4

EasyLanguage for RadarScreen

This chapter covers EasyLanguage specifically for use with RadarScreen 2000i.

When working with RadarScreen, you can write indicators for use in the RadarScreen
window as well as price charts. RadarScreen 2000i enables you to scan and rank symbols
based on almost any criteria imaginable. Unlike price charts, where your indicators are
restricted to plotting a numeric value, your RadarScreen indicators can plot a numeric or
text string expression. This, combined with the ability to sort your symbols by up to four
indicators (in ascending or descending order), allows you a great deal of power and
flexibility when ranking your symbols.

This chapter describes the reserved words you’ll be using to write your RadarScreen
indicators, and the considerations you should keep in mind when writing them to
maximize the power of RadarScreen.

Keep in mind that the information in this chapter builds on the foundation outlined in
Chapter 2, “The Basic EasyLanguage Elements.” Therefore, we recommend you read
and understand the material in Chapter 2 before continuing with this chapter, particularly
the section titled, “How EasylLanguage is Evaluated,” at the beginning of Chapter 2.

In This Chapter

m Writing RadarScreen Indicators............ 180 m Specifying Availability of

iti i INGICALONS ..o 191
m Writing Indicators for naicators

SuperCharts SEccccoeeieiiciieieneene 185

180 Writing RadarScreen Indicators CHAPTER 4

Writing RadarScreen Indicators

When working with price charts, an indicator is a mathematical formula that returns a
numeric value. These values are then displayed in a price chart, either overlaid on the
price data or in a subgraph below it. However, when working with RadarScreen, an
indicator can return a numeric or text string value. This enables you to scan your symbols
as well as rank them.

For instance, you can display thousands of symbols, scan the data for certain criteria, and
enable alerts so you are notified when your symbdols meet any of the criteria in your
specific indicator(s). You can also rank the symbols. In other words, you can sort the
symbols by certain indicators, so that instantly, the symbols you want to trade are listed
at the top of the window, or grouping.

Let’s take a look at a RadarScreen window. Each column is an indicator, and the value
shown in each cell represents the value of the indicator calculated for the symbol in that
particular row. Also, the values displayed are the values of the indicators for the latest
data point available (most recent bar). Figure 4-1 shows a RadarScreen window
containing several indicators.

28 RadarScreen [_ O] =] I
Symbol Description Last (Day) Chgitge gﬁ::g”; High (Day) | Low (Day) | MowAvg 1 line HFllg:IhEerst Ea RS‘D‘
1 [MRK__merck & Ca Inc 74750 1000 136% 75188 73625 59.931 T 78 589
2 |om General Motors Corporation 67.625 0313 046% 69.250 57.438 64965 T £4.352|C
3 |wwT |wiakwart Stores Inc 54313 -1063 -192% 55.063 54.000 a0.561 NG 7096 C
4 |ap American Express Company 147626 -2063 -138% 149500 147125 140896 NG 62556 C
i T ATET Corp 48188 0780 148% 48168 47 563 45007 R 61306 C
B |oE General Electric Co 123625 1125 -D80% 124438 1I3.500 120.950 [NNNENNN G0907 C
7 Jumd Johnson & Johnson 98.063 -0E8E -D70% 99.375 98.063 as 750 [N 55303 0
8 |aD Allied Signal Inc BIBTS 2863 410% 4,250 &1.188 a0.702 N 59223 C
9 |CcaT Caterpillar Inc 58.663 1038 342% 58750 57188 55067 [57415 C
10 |C Citigroup Inc 46000 -0563 -121% 47.000 45 875 4497 [57.037 C
11 Juk Unian Carbide Gorp 50430 -0188 0 -0.32% 59374 50.313 56.060 NG 56271 C
12 |McD Mc Donald's Corp 43088 0438 101% 44188 43188 43300 NG 55959
13_|oD Du Pant (1} De Memours & Co 65438 <1813 -270% 67313 65438 63500 [N 57636 C
14 |an Aleoa Ine BIDEI 1430 233% 63063 61.313 61924 NG 51109 C
15 _|PG Proctor & Gamble Co 97688 -0375 -0.38% 95.938 47 500 a6.054 G 50607 C
16_|IF International Faper Co 48375 0813 1T1% 48.750 47.740 46651 [N 48843 C
[EB LT Minnesota hining & Mig Co 94750 -0800 -042% 95.430 84.375 94220 RN 49190 C
18 _|GT Gondyear Tire & Rubber Co 50260 -0.500 -0.89% 51.000 50.250 sl 00 AR
18 |Ko Coea Cola Co 52375 -0BGG -1.30% 52500 52,063 sotco NG 4751 C
0 |Ek Eagtman Kodak Co T4DE2 -0BZE -0.02% 74500 73038 7543 N 26792 C
21Ut United Technologies Corp 58125 <1125 -180% 59125 57 88 GEd 2= R
22 |drw margan (P & Co Inc 116750 -1.375 -116% 118.313 116.375 116.270 [42035 0
TS [¥] Page 1 / I - S __>]_I

Figure 4-1. Various indicators in a RadarScreen window

You can set alerts on individual indicators, as well as sort your symbols by up to four indi-
cators. Keep in mind also, that the concept of price bars and data compression on a price
chart also applies when working with a RadarScreen window. For instance, in
RadarScreen, the data compression can vary just like it does in a price chart, and when an
indicator refers to bars, it is referring to the data compression selected for the symbol.

For example, if a Moving Average 1 Line Indicator is applied to a RadarScreen window,
and the symbol’s data compression is set to daily (the default), and the Length input of the
indicator is set to 10, this indicator will calculate the 10-day average of this symbol. How-

EasyLanguage for RadarScreen Writing RadarScreen Indicators 181

ever, if another symbol’s data compression is set to 30 minutes, then the same indicator will
calculate the 5-hour average for that symbol.

How EasylLanguage evaluates data for the RadarScreen window is discussed in detail in
Chapter 2, “The Basic EasyLanguage Elements.” Refer to the first section of that chapter,
titled, “How EasylLanguage Evaluates Data.” It provides an important foundation you’ll
need to understand the RadarScreen Plot statements and begin writing your indicators.

The reserved words used to write indicators for use with RadarScreen are described next.

Plot Statements

The reserved words used to create indicators result in statements referred to as plot
statements because they control how information is displayed, or plotted, either in a
grid (i.e., a RadarScreen window) or in a price chart.

PlotN(Expression, “<PlotName>", ForeColor, BackColor)

Displays values, resulting from a calculation or an expression, in a RadarScreen window.
The values can be numeric or text string.

Syntax:
Pl ot N(Expressi on [, “<Pl ot Name>"[, ForeCol or[, BackCol or 1]11);

Parameters:

N is a number between 1 and 4, representing one of the four available plots. Expression is
the value that will be plotted (either numeric or text string expression), and <PlotName>
is the name of the plot. ForeColor is an EasyLanguage color that will be used for the plot
foreground, and BackColor is an EasyLanguage color that will be used for the plot back-
ground. The parameters <PlotName>, ForeColor, and BackColor are optional. When plot-
ting a text string expression, the expression must be enclosed in quotation marks (e.g., “T”).

For a list of the available colors, refer to Appendix B of this book.

Notes:

There is a category of reserved words called Quote Fields. These words enable you to ac-
cess snapshot information from the datafeed, and allows indicators applied to RadarScreen
to use less memory and be more efficient in its calculations; in other words, to optimize its
performance. They are very useful for performing analysis on intraday minute and tick bars
and referencing the current day’s information (e.g., daily high, low, open). For information
on Quote Fields, refer to Chapter 2, “The Basics EasyLanguage Elements.”

Example:

Any one or more of the optional parameters can be omitted, as long as there are no other
parameters to the right. For example, the background color can be excluded from the state-
ment, as follows:

Pl ot1(Vol ume, “V', Black);
But the plot name cannot be omitted if you want to specify the plot colors. For instance, the

following example generates a syntax error because the name of the plot statement is ex-
pected:

182 Writing RadarScreen Indicators CHAPTER 4

Incorrect:
Plot1(Vol urme, Black, Wite);

Correct:
Plot1(Vol ume, [“V', Black, Wite);

The only required parameter for a valid Plot statement is the value plotted. So the following
statement is valid:

Pl ot 1(Vol une) ;

When no plot name is specified, EasyLanguage will use Plot1, Plot2, Plot3, or Plot4 as the
plot names for each plot. The first plot will be named Plot1, the second Plot2, and so on.

Whenever referring to the foreground color or background color, you can use the word De-
fault in place of the parameter(s) to have the Plot statement use the default colors selected
in the Properties tab of the Format indicator dialog box.

For example, the following statement can be used to display the volume in the default fore-
ground color but a specific background color:

Plot1(Volume, “V', Default, Red);

Again, you can use the word Default for either of the color parameters.

Also, the same plot (i.e., Plotl, Plot2) can be used more than once in an indicator; the only
requirement is that you use the same plot name in both instances of the Plot statement. If
no name is assigned, then the default plot name is used (i.e., Plot1, Plot2).

For example, if you want to plot the net change using red when it is negative and green
when it is positive, you can use the same plot number (in this case Plotl) twice, as long a
the name of the plot is the same:

Val uel = Close - Cose[1l];

If Valuel > 0 Then

Plot1(Valuel, “NetChg”, Geen)
El se

Plot1(Valuel, “NetChg”, Red);

In this example, the plot name “NetChg” must be the same in both instances of the Plot
statement.

As discussed, the power of RadarScreen lies in its ability to plot not only numeric values
but also text string values. For example, the following indicator displays a T in the cell
when the symbol experiences a key reversal, and an F when it does not:
If Low < Low{1] AND Close > C ose[1l] Then
Plot1(“T", “KR)
El se
Plotl(“F", “KR");

EasyLanguage for RadarScreen Writing RadarScreen Indicators 183

SetPlotColor(Number, Color)

This reserved word is used to change the foreground or plot color of a particular plot.

Syntax:
Set Pl ot Col or (Nunber, Col or);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Color is
the EasyLanguage color to be used for the plot.

Notes:

This reserved word changes the color of the plot; the reserved word described next,
SetPlotBGColor, changes the background color of the plot (for use only with grid
applications; in other words, the RadarScreen or OptionStation Position Analysis
windows).

For a list of the available colors, refer to Appendix B of this book.

Example:

The cglor of the plot can be changed for each price; for example, if the indicator value is
negative, the plot can be displayed in red, and when the indicator value is positive, the

plot can be displayed in green. The following statements show how to modify the color
of an indicator; in this case, the Momentum Indicator:

Pl ot 1(Monment un(d ose, 10), “Monentuni);

If Plotl > 0 Then
Set Pl ot Col or (1, Green)
El se
Set Pl ot Col or (1, Red);
In this example, the Momentum Indicator has two possible colors: green when it is over

0, red when it is below 0. Please refer to the example for the next reserved word,
SetPlotBGColor for a variation on the usage of this reserved word.

SetPlotBGColor(Number, Color)

This reserved word is used to change the background color of the cell where the value
of the plot is displayed.

Syntax:
Set Pl ot BGCol or (Nunber, Col or);

Parameters:
Number is a number from 1 to 4 identifying the plot to modify, and Color is the
EasyLanguage color to be used for the background of the cell.

Notes:
The color of the plot can be set as you create the plot, using the reserved word PlotN;
the SetPlotBGColor reserved word is used to change the color on a value by value

184

Writing RadarScreen Indicators CHAPTER 4

basis. For example, if a symbol is overpriced, the indicator can change the background
color of the cell to red, and when the symbol is under priced, the indicator can set the
color to green.

For a list of the available colors, refer to Appendix B of this book.

Example:
The following EasyLanguage statements color the background of the cell red when the

RSI Indicator is over 75, and green when it is under 25:
Plot 1(RSI (Cose, 9), “RSI") ;
Set Pl ot B&Col or (1, Defaul t);
If RSI(Close, 9) > 75 Then
Set Pl ot BGCol or (1, Red);
If RSI(Close, 9) < 25 Then
Set Pl ot BGCol or (1, Green);

In this example, the RSI Indicator has three possible colors: red when it is over 75,
green when it is below 25, and the default color when it is between 25 and 75. If you
only set two colors, one for over 75 and one for under 25, it would remain one of the
two colors (which ever it was set to last) when it is between 25 and 75. What you need
to do is reset the plot color to another color every bar so that it is only red when above
75 and green when below 25. The rest of the time it is the other color. In this example,
we used the SetPlotBGColor reserved word to reset the plot to the default color.

You can also set the default color of the plot using the PlotN reserved word. If you set
the default color in the PlotN statement, then you don’t have to use the first
SetPlotBGColor statement; instead your instructions would be as follows:

Plot1(RSI (O ose, 9), “RSlI”, Default, Default)

If RSI(Cose, 9) > 75 Then
Set Pl ot BGCol or (1, Red);

If RSI(Cose, 9) < 25 Then
Set Pl ot BGCol or (1, G een);

The same applies for the previous reserved word, SetPlotColor.
NoPlot(Num)

This reserved word removes the specified plot from the cell.

Syntax:
NoPI ot (Num)

Parameters:]])
Num is a numeric expression representing the number of the plot to remove.

Notes:
This reserved word is useful when you want the cell to revert back to a blank cell.

EasyLanguage for RadarScreen Writing Indicators for SuperCharts SE 185

Example:

The following indicator displays the percentage change of the price (from the open)
when it is more than 5% in either direction, up or down. When the percentage change
is less than 5% either up or down, the cell is blank:

Val uel = ((Cd ose - Open)/Open) * 100 ;

If Valuel >= 5 or Valuel <= 5 Then
Pl ot 1(Val uel, “Pcnt Change”)

El se
NoPI ot (1)

Writing Indicators for SuperCharts SE

This section discusses how to write indicators for use with SuperCharts SE, and is
intended for those who have purchased RadarScreen only. In this case, you have
SuperCharts SE available for your charting and technical analysis needs.

If you purchased ProSuite 2000i or TradeStation, you will have TradeStation available
for your charting and trading strategy testing needs, and you should refer instead to the
chapter of this book titled, “EasyLanguage for TradeStation,” for information on
writing trading signals, indicators, and studies for use with TradeStation.

Writing Indicators

When working with price charts, indicators calculate a mathematical formula and
display their values on the price chart. When you apply an indicator to a price chart,
you can format the indicator to display their values in different ways; for example, as
shown in Figure 4-2, you can format the indicator to display as a line chart, as a
histogram, or as a series of dots.

186

Writing Indicators for SuperCharts SE

CHAPTER 4

MSFT LASTiDaily 08/266 gleg | 56.000
: : : llh {H
! ! [h I 52,000
i i A
i | i| \-. { .':r L 43.000
1 | r44.000
\r y 4l "".L'“Il“”‘f 7|
t :
IH "'L } ' f ! 40.000
”I.IT | | '
Mnmentum(Close 100 13, 69
|||H||
Il . .||I||I|.|,_“, g |||||I||||I. ol N .|”|““ D . .|I|||| ||| 000
REliClose, 14 30,70 Green Magenta) G783 2000 7000
/\! JA . ! ! NJI‘_—J-QD.DD
i . . ! —30.00
iMar ipﬁxpr iMay iJun iJul
Kl [| i

Figure 4-2. Different forms of indicators

You can even format the properties of an indicator to display as a bar chart. For
example, in the case of an indicator with three plots, such as the 3-Line Moving
Average Indicator, you can format the indicator and set one plot to bar high, another to
bar low, and another to right tick. The revised 3-Line Moving Average indicator

displayed as a bar chart is shown in Figure 4-3.

EasyLanguage for RadarScreen Writing Indicators for SuperCharts SE 187

|
i Format Indicator: Moy Avg 3 lines []

l l Inputs Stk | Soaling | Propetties |

l & Simpdvgl

MR =
I

£ Simpbwg3

Type Color

Bar High Z e -

Line
Histogiam

I’I’IIIUHW |‘ N l||;

jv
MovAvg3Iines(Close,4,9l,18,D) 92.984 90.340 8|?.191 HI [0¢ | comcd | Hep
i i IHI .lH j FET.OoT
i 5 il i "!"‘|||luu.,!,,ll”“'%-”““
““l‘llﬂ‘n”r. !r.‘_‘._,Hn:;r} : : [&2.000
;I Jun Jul Aug _ILI

Figure 4-3. Indicator formatted to display as a bar chart

For more information on formatting indicators, please refer to the Online User Manual.

Also, make sure you understand the concept of scaling with respect to price charts and
indicators. Using different scaling can dramatically alter the display of your indicators.
For information on scaling, search the Online User Manual Answer Wizard for
Indicator Formatting.

You use two of the same plot statements to create an indicator for use in a price chart
as you do for use in the RadarScreen window, PlotN and SetPlotColor; however, there
are some parameters for these plot statements that apply only when working with price
charts. Therefore, the plot statements are discussed again, this time with the focus on
the parameters and considerations that apply when working with price charts.

PlotN(Expression, “<PlotName>", ForeColor, BackColor, Width)

Displays values, resulting from a calculation or an expression, in a price chart. For price
charts, the values displayed can only be numeric.

Syntax:
Pl ot N(Expr essi on[, “ <Pl ot Name>" [, For eCol or, [BackCol or, [, Wdth]]]1]);

Pa_rameters:
N is a number between 1 and 4, representing one of the four available plots. Expression is

the numeric value that will be plotted, and <PlotName> is the name of the plot. ForeColor
is an EasyLanguage color that is used for the plot, BackColor specifies the background col-

188 Writing Indicators for SuperCharts SE CHAPTER 4

or (for use only with the RadarScreen and OptionStation Position Analysis windows), and
Width is a numeric value representing the width of the plot. The parameters <PlotName>,
ForeColor, BackColor, and Width are optional.

For a list of the available colors and widths, refer to Appendix B of this book.

Notes:
The BackColor parameter has no effect when plotting the indicator in a price chart window;
however, it is required in order to specify a width, as discussed in the example.

Example:

Any one or more of the optional parameters can be omitted, as long as there are no other
parameters to the right. For example, the BackColor and Width parameters can be excluded
from a statement as follows:

Pl ot1(Vol urme, “V', Bl ack);
But the plot name cannot be omitted if you want to specify the plot color and width. For

instance, the following example generates a syntax error because the name of the plot state-
ment is expected:

Incorrect:
Pl ot 1(Vol ume, Bl ack, Wite, 2);

Correct:
Plot1(Vol ume, “V', Black, Wite, 2);

The only required parameter for a valid Plot statement is the value that will be plotted. So
the following statement is valid:

Pl ot 1(Vol un®) ;
When no plot name is specified, EasyLanguage will use Plot1, Plot2, Plot3, or Plot4 as the
plot names for each plot. The first plot will be named Plot1, the second Plot2 and so on.

Whenever referring to the plot color or width, you can use the word Default in place of the
parameter(s) to have the Plot statement use the default color and/or width selected in the
Properties tab of the Format indicator dialog box.

For example, the following statement can be used to display the volume in the default color
but a specific width:

Plot1(Volume, “V', Default, Default, 3);

Again, you can use the word Default for the color parameters or the width parameter.

Also, the same plot (i.e., Plotl, Plot2) can be used more than once in an analysis technique;
the only requirement is that you use the same plot name in both instances of the Plot state-
ment. If no name is assigned, then the default plot name is used (i.e., Plotl, Plot2).

For example, if you want to plot the net change using red when it is negative and green
when it is positive, you can use the same plot number (in this case Plotl) twice, as long a
the name of the plot is the same:

EasyLanguage for RadarScreen Writing Indicators for SuperCharts SE 189

Val uel = Cose - Cose[l];

If Valuel > 0 Then

Plot1(Valuel, “NetChg”, Geen)
El se

Plot1(Valuel, “NetChg”, Red);

In this example, the plot name “NetChg” must be the same in both instances of the Plot
statement.

Note: Once you have defined a plot using the PlotN reserved word, you can reference
the value of the plot simply by using the reserved word, PlotN. In the example below,
the reserved word Plot1 is used to plot the accumulation distribution of the volume. The
value of the plot is referenced in the next statement, in order to write the alert criteria:

Pl ot 1(AccunDi st (Vol une), "AccunDi st")

If [Plotl > H ghest(Plotl, 20) then Alert

SetPlotColor(Number, Color)

This reserved word is used to change the color of a particular plot in a price chart
window.

Syntax:
Set Pl ot Col or (Nunber, Col or);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Color is
the EasyLanguage color to be used for the plot.

For a list of the available colors, refer to Appendix B of this book.

Example:
The following EasyLanguage statements color the plot red when the RSI Indicator is
over 75, and green when it is under 25:

Pl ot 1(RSI (Cl ose, 9), “RSI")
Set Pl ot Col or (1, Default);

If Plotl > 75 Then
Set Pl ot Col or (1, Red);

If Plotl < 25 Then
Set Pl ot Col or (1, Green);

In this example, the RSI Indicator has three possible colors: red when it is over 75,
green when it is below 25, and the default color when it is between 25 and 75.

190

Writing Indicators for SuperCharts SE CHAPTER 4

If you only set two colors, one for over 75 and one for under 25, it would remain one
of the two colors (which ever it was set to last) when it is between 25 and 75.

What you need to do is reset the plot color to a default color every bar so that it is only
red when above 75 and green when below 25. The rest of the time it is the default color.
In this example, we used the SetPlotColor reserved word to reset the plot to the default
color.

You can also set the default color of the plot using the PlotN reserved word. If you set
the default color in the PlotN statement, then you don’t have to use the first
SetPlotColor statement; instead your instructions would be as follows:

Plot1(RSI (Close, 9), “RSI”, Default)

If Plotl > 75 Then
Set Pl ot Col or (1, Red);

If Plotl < 25 Then
Set Pl ot Col or (1, Green);

SetPlotWidth(Number, Width)

This reserved word sets the width of the specified plot.

Syntax:
Set Pl ot W dt h(Nunber, Wdth);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Width is
the EasyLanguage width to be used for the plot.

For a list of the available widths, refer to Appendix B of this book.

Example:
The following EasyLanguage statements change the width of the plot to a thicker line
when the Momentum Indicator is over 0, and to a thinner line when it is under 0:

Pl ot 1(Moment un{ d ose, 10), “Monentuni) ;

If Plotl > 0 Then
Set Pl ot Wdth(1, 2);

If Plotl < O Then
Set Pl ot Wdth(1, 6);

In this example, the Momentum Indicator has two possible widths: thicker when it is
over 0, and thinner when it is below 0. However, in some cases you will want the
indicator to have three or more possible widths. Please refer to the example for the
previous reserved word, SetPlotColor for a variation on the usage of the reserved word.
The same applies for SetPlotWidth.

EasyLanguage for RadarScreen Specifying Availability of Indicators 191

Specifying Availability of Indicators

When you create an indicator in the EasyLanguage PowerEditor, you are prompted to
specify the applications (i.e., price chart, RadarScreen window) for which your
indicator will be available. By available, we mean it will appear in the library of
indicators to apply when you choose to insert an indicator into the application.

The choices available to you depend on which TradeStation Technologies product(s)
you purchased. For example, if you purchased ProSuite 2000i, by default, the indicator
will be available in TradeStation charts, RadarScreen, and all sections of the Position
Analysis window. For information on specifying the applications for which your
indicator is available, search the Online User Manual Answer Wizard for the phrase
Specifying Applications.

192 Specifying Availability of Indicators CHAPTER 4

CHAPTER 5

EasyLanguage for OptionStation

This chapter covers EasyLanguage that is specifically for use with OptionStation 2000i.

You can write indicators for use with the OptionStation Position Analysis window as
well as price charts. You can also create custom Search Strategies, for use with the
Position Search Wizard, and Pricing, Volatility, and Bid/Ask Models, which enable you
to fully customize OptionStation’s price modeling and position search calculations.

This chapter first reviews how OptionStation uses the Price Modeling Engine to process
the data it receives from the GlobalServer, derive the modeled values, and prepare the
data for analysis. The chapter then describes the OptionStation-specific reserved words,
providing contextual examples to create OptionStation indicators, Search Strategies, and
models.

Included with the explanation of the reserved words are descriptions of the Position
Search Engine and Price Modeling Engine, so you’ll understand the effect of your
EasylLanguage instructions on the Engines’ calculations.

In This Chapter
m OptionStation Data Analysis.......... 194 m Writing Search Strategies 215
m Reading OptionStation Data.......... 195 m Writing OptionStation Models....... 223

m Writing OptionStation Indicators .. 204 m OptionStation Global Variables.....235

m Writing Indicators for
SuperCharts SE........cccoeoeenineanne 208

194 OptionStation Data Analysis CHAPTER 5

OptionStation Data Analysis

When developing indicators, Search Strategies, and models in OptionStation, it is neces-
sary to understand how OptionStation processes the data it receives from the GlobalServer,
how it performs its calculations, and what data is available to you at what point during the
calculations. The OptionStation data analysis process occurs in three general steps, as
shown in Figure 5-1.

Sap1 Srap 2 Step 3
Faca Modehrg g

Herw dats pbtaned Pt T i i
by OxrfionStatisn . LI Y Pl r '-_"") Position Sasrch mn o
| L= E il e S e — . .)
e GlohelSere 4 .-", Y s aEfian Analsis windew
- . -, e :I:*.-aj
M) . BR |
'H.______- '\'.__'_.-

“W = Fnong Matel W= voaiey Model B4 = DAk WMo

Figure 5-1. OptionStation data analysis process

First, any new data for the underlying asset and options currently being analyzed is passed
from the GlobalServer into OptionStation. This is the beginning of the data analysis process
and therefore considered Step 1.

Automatically, as soon as any new data is received by OptionStation, the OptionStation
Price Modeling Engine calculates the necessary modeled values and prepares all data for
analysis. The modeled values calculated are the Market Implied Volatility (MIV) on Close,
MIV on Bid, and MIV on Ask; the volatility, theoretical, and greek values for all options
being analyzed; the modeled Bid and Ask values for the options; and the M1V for the mod-
eled Bid and Ask values. This automatic process is considered Step 2. It is a resource-in-
tensive step because the values are being calculated for the underlying asset(s) chosen for
analysis and all the options included in the analysis.

Pricing, Volatility, and/or Bid/Ask Models are used during Step 2. The Price Modeling
Engine is described in detail in the section of this chapter titled, “Writing OptionStation
Models.”

Step 3 occurs when you run a Position Search or open an OptionStation Position Analysis
window. During the Position Search, any Search Strategies selected are executed using data
from the GlobalServer and the values calculated in Step 2. Similarly, when you open a
Position Analysis window, all indicators are executed using the data from the GlobalServer
and the values calculated in Step 2.

What this means is that when you write OptionStation indicators, Search Strategies and/or
models, you have to keep in mind what data is available. For example, you cannot reference
position information when you’re writing a Pricing, Volatility, or Bid/Ask Model, because
positions are not established until Step 3. The table in Figure 5-2 shows the availability of

EasyLanguage for OptionStation Reading OptionStation Data 195

data in different OptionStation EasyLanguage documents (Indicator, Search Strategy,
Pricing Model, Volatility Model, or Bid/Ask Model).

OPTIOMSTATION EASYLANGUAGE DOCUKMERTS
[T, AL AHLE Wodals dict Eoa]
vohlitly | Price | BidAak ksl SRRIE =ralegy
nderdyng sasel gnie Jets i i H T "
Dlptn i G2 date { f f 1 1
ST O rre lagd, Bad, and Ask o J i L]
I'It.'ljl-l "'_].-.:ll- d o "'
Thesralical Vale ard Grasks i 1 '
Wadeled Bid and Ask J y
%1 on modeled Bid and Azk ¥ ;
Fasitios nfarmatios J p

Figure 5-2. OptionStation data availability

Keep the information in the above table in mind when you write your indicators, Search
Strategies, and/or models to ensure that you reference data that is available.

Reading OptionStation Data

The previous section provides an overview of the order in which OptionStation performs
its calculations and what data is available to you at each stage. There is a tremendous
amount of information available to you, and depending on the OptionStation
EasyLanguage document (Indicator, Search Strategy, Pricing Model, Volatility Model,
or Bid/Ask Model) you are creating, you can refer to information on the underlying asset,
option, and/or position.

To enable you to manage the vast amount of information available, OptionStation
EasylLanguage provides reserved words that act as qualifiers to enable you to specify
whether you want to refer to information on the underlying asset, option, or position.

For instance, to calculate the intrinsic value of an option, you retrieve the strike price of
the option as well as the closing price of the underlying asset. In this case, you need to

specify that you want to refer to the closing price of the underlying asset as opposed to

the close of the option. The way to do this is by using the reserved words outlined next
as qualifiers (or data aliases).

The reserved words you can use as qualifiers are listed next, grouped by the type of
information they provide: asset, option, or position.

196

Reading OptionStation Data CHAPTER 5

Asset Information

EasyLanguage enables you to reference, through a set of reserved words, the
information related to the underlying asset being analyzed. These reserved words are
available when working with all OptionStation EasyLanguage documents (Indicator,
Search Strategy, Pricing Model, Volatility Model, or Bid/Ask Model).

Asset

This reserved word is used as a qualifier, or data alias, to reference information for the
underlying asset (stock or index) of the option being analyzed.

Syntax:
Val ue of asset

Parameters:
None.

Value is any value you can obtain for the underlying asset; for example, a piece of
information such as the closing price, trade volume, etc. Of is a skip word that makes the
expression easier to read.

Notes:

This reserved word is for use with stocks and indexes. For referencing futures, use Of
Future or Of Future(num). If you use Of Asset to refer to a future contract, OptionStation
will obtain the information for the same series future contract only.

Example:
The following expression refers to the last closing price of the underlying asset:

Cl ose of asset

The following expression obtains the 10-bar average of the volume of the underlying
asset:

Aver age(Vol une of asset, 10)
Future

This reserved word is used as a qualifier, or data alias, to reference information for the
underlying asset when analyzing options on future contracts.

Syntax:
Val ue of future

Parameters:
None.

Value is any value you can obtain for the underlying asset; for example, a piece of
information such as the closing price, trade volume, etc. Of is a skip word that makes the
expression easier to read.

EasyLanguage for OptionStation Reading OptionStation Data 197

Notes:
See notes for Future(num)

Example:
The following expression refers to the last closing price of the underlying asset:

Cl ose of future
The following calculates the 10-bar average of the volume of the underlying asset:

Aver age(Vol une of future, 10)
Future(num)

This reserved word is used as a qualifier, or data alias, to reference information for a
specific future contract, not just the future contract being analyzed.

Syntax:
Val ue of future(num

Parameters: .]]] o
Num is a numeric expression representing the future contract to which the expression is
referring.

Value is any value you can obtain for the future contract, for example, a piece of
information (e.g., closing price, volume, expiration date). Of is a skip word that makes
the expression easier to read.

Notes:

When you apply an indicator to the Assets or Options section of the Position Analysis
window, the indicator references the future contract in the row to which it is applied.
However, you can reference information for any of the available future contracts, using
the reserved word Of Future(num).

For example, assume you have three future contracts listed in the Assets section of your
Position Analysis window. If you use the qualifier Of Future in your indicator, the
calculations will reference only the future contract in the row to which the indicator is
applied. However, when you use Of Future(num), the indicator can reference any future
contract being analyzed.

Likewise, when we apply the indicator to the Options section of the window, if we use
Of Future(num), we can refer to the future contract underlying the option in the row to
which the indicator is applied or to any future contract being analyzed.

When OptionStation obtains the future contracts from the GlobalServer, it numbers them
arbitrarily, from 1 through n. Therefore, to refer to a particular contract, you must first
determine what number OptionStation has assigned to it. The only identifying
characteristic of a future contract is its expiration date, which means you can use the
reserved word ExpirationDate to find specific contracts.

For example, if you know the expiration date for the future contract you want to refer to,
you can find the number assigned to it using the following instructions:

198 Reading OptionStation Data CHAPTER 5

For Valuel = 1 To NunfFutures of asset Begin
If ExpirationDate of future = ExpirationDate of
future(Val uel) Then Val ue2 = Val uel;
End;
When the loop is done, the variable Value2 will contain the number assigned by

OptionStation to the future contract, and you can use it in place of the num parameter.
The examples here use the reserved word NumFutures, which is described next.

Or, we can find the front contract (the one that will expire next) by looking for the
future contract that is closest to current date. We can find the future contract with the
smallest number when we subtract the current date from the expiration date.

Vari abl es: Qur Nunber (0), Counter(0)

Val uel = DateToJulian(Expirati onDate of future(l)) -
Dat eToJul i an(Current Dat e) ;

For Counter = 1 To NunFutures of asset Begin
I f DateToJulian(ExpirationDate of future(Counter)) -
Dat eToJul i an(Current Date) < Val uel Then Begin
Val uel = DateToJul i an(ExpirationDate of
future(Counter)) — DateToJulian(CurrentDate);
Qur Nunber = Counter;
End;
End;

First, we declare our two variables, OurNumber and Counter. We also use a
predeclared variable Valuel.

We then subtract the current date from the expiration date of the future assigned
number 1 and assign the result to the variable Valuel.

Then, using a For loop, we subtract the current date from the expiration date of each
future contract available (1 through NumFutures), and compare the result to the value
in Valuel. If the result is less than the value in Valuel, then a new value is assigned to
Valuel and the number for the future contract is assigned to OurNumber.

When the loop is done, the variable OurNumber will contain the number assigned by
OptionStation to the front future contract.

Note: OptionStation depends on the GlobalServer to mark options ‘expired’. The
GlobalServer marks symbols as expired during Nightly Maintenance. Allowing Nightly
Maintenance to run each night as scheduled will ensure all expired options are marked
as such and therefore not included in the analysis.

EasyLanguage for OptionStation Reading OptionStation Data 199

Example:
The following refers to the closing price of the first future contract listed:

Cl ose of future(1)

The following obtains the highest high of the last 10 bars of the second future contract:

H ghest (H gh of future(2), 10)

NumFutures

This reserved word is not a data alias, but returns the total number of future contracts
loaded in the current Position Analysis window.

Syntax:
Nunfut ures data alias

Parameters:
None; however, you must use the data alias Of Asset (where Of is a skip word that makes
the expression easier to read).

Notes:
When NumFutures returns a value of 0, it means the underlying asset is a stock or
index.

Example:
You can use the NumFutures reserved word to traverse through all available future

contracts using a For loop. As described with the reserved word Futures(num), the
following instructions enable you to find the number OptionStation assigns to a specific
futures contract when you know its expiration date:
For Valuel = 1 to NunfFutures of asset Begin
If ExpirationDate of future = ExpirationDate of
future(Val uel) Then Val ue2 = Val uel;
End;

200

Reading OptionStation Data CHAPTER 5

Option Information

EasyLanguage enables you to reference, through a set of reserved words, information
related to the options being analyzed. These reserved words are available when
working with all OptionStation EasyLanguage documents (Indicator, Search Strategy,
Pricing Model, Volatility Model, or Bid/Ask Model) as specified in Figure 5-2 on page
195.

Option

This reserved word is used as a qualifier, or data alias, to reference the information for the
option being analyzed.

Syntax:
Val ue of option

Parameters:
None.

Value is any value you can obtain for the option; for example, a calculated function or a
piece of information such as the closing price, strike price, etc. Of is a skip word that
makes the expression easier to read.

Notes:

When used in an indicator applied to the Options section of the Position Analysis window,
the instructions will apply to the single option in each row to which the indicator is applied.
The instructions apply to the specific option being analyzed. To reference an option other
than the one currently being analyzed, use Of Option(hum), which is described next.

Example: o
The following calculates the intrinsic value of a call:

Val uel = Strike of option - Cl ose of asset;
Option(num)

This reserved word is used as a qualifier, or data alias, to reference the information for a
specific option. It enables you to reference the values of any available option, not just the
option being analyzed.

Syntax:
Val ue of option(num

Parameters:])))) o .
Num is a numeric expression representing the option to which the expression is referring.

Value is any value you can obtain for the option; for example, a piece of information such
as the closing price, strike price, etc. Of is a skip word that makes the expression easier
to read.

EasyLanguage for OptionStation Reading OptionStation Data 201

Notes:
When OptionStation obtains the options from the GlobalServer, it numbers them

arbitrarily, from 1 through n. Therefore, to refer to a particular option, you must first
determine what number OptionStation has assigned to it. The identifying characteristics
of an option are the expiration date, type of option, and the strike price; therefore, you
can use the reserved words ExpirationDate, OptionType, and Strike to identify the
number assigned to an option.

For your convenience, OptionStation provides two user functions designed to determine
the number assigned to an option, OS_FindCall and OS_FindPut. Please refer to the
Function Library in the Online User Manual for information on these user functions.

Example:
The following instructions return a summation of the open interest for all Put options:

For Valuel = 1 To NumOptions of asset Begin
If OptionType of option(Valuel) = Put Then
Total Putl = Total Putl + Openlnt of option(Valuel) ;
End ;

The IF-THEN statement within the loop adds the open interest of all put options being an-
alyzed, and stores the result in the variable TotalPutl. The above example uses the reserved
word NumOptions, which is described next.

NumOptions

This reserved word is not a data alias; it returns the total number of options being
analyzed.

Syntax:
NumOpt i ons of asset

Parameters:
None; however, you must use the data alias Of Asset (where Of is a skip word that makes
the expression easier to read).

Example:
The following instructions traverse through all available options using a For loop; in this

case, the loop adds the open interest for all Put options and stores them in the variable
TotalPutl.
For Valuel = 1 To NumOptions of asset Begin
If OptionType of option(Valuel) = Put Then
Total Putl = Total Putl + Openlnt of option(Valuel)

End;

202 Reading OptionStation Data CHAPTER 5

Position Information

EasyLanguage also offers the possibility of referencing position-related information,
through a set of reserved words that will allow the manipulation of both position and
position leg-related information. These reserved words are available when working
with Search Strategies and indicators specifically written for the Positions section of
the Position Analysis window.

Position

This reserved word is used to reference the information for the position being analyzed.
You cannot reference another position, only the position in the row in the Position
Analysis window to which the indicator is applied.

Syntax:
Val ue of position

Parameters:
None.

Value is any value you can obtain for the position; for example, a piece of information
such as the Delta value. Of is a skip word that makes the expression easier to read.

Example:
The following statement assigns the delta of the position to the variable Valuel:

Val uel = Delta of position;
Leg(num)

This reserved word is used to reference information for any leg of the position being
analyzed.

Syntax:
Val ue of |eg(num

Parameters:))] o))
Num is a numeric expression representing the leg of the position to which the expression

is referring.

Value is any value you can obtain for the leg; for example, a piece of information such
as the expiration date, strike price, etc. Of is a skip word that makes the expression easier
to read.

Notes:
Legs are numbered arbitrarily, from 1 through n. To reference a specific leg, you need to

first determine which number is assigned to the leg you want to analyze. To do so, use
the expression LegType of Leg(num), Strike of Leg(num), or ExpirationDate of Leg(num)
to determine which option comprises the specific leg.

Example:
The following Search Strategy will create a position that consists of writing a call and buying

EasyLanguage for OptionStation Reading OptionStation Data 203

a second call. The Of Leg(num) qualifier is used to compare the strike prices of the two legs
being evaluated:

CreatelLeg(1l, Call);
CreatelLeg(-1, Call);
Conditionl = Strike of leg(1l) < Strike of leg(2) — 10 ;

Posi ti onSt at us(Condi ti onl) ;

For information on Search Strategies, see the section later in this chapter, titled
“Writing Search Strategies.”

ModelPosition

This reserved word is used to reference information for the modeled positions built when
a Position Search is run. This reserved word is available only when writing Search
Strategies.

Syntax:
Val ue of Mbdel Position

Parameters:
None.

Value is any value you can obtain for the modeled position; for example, a calculated
function or a piece of information such as the theoretical value. Of is a skip word that
makes the expression easier to read.

Notes:
This information is used when evaluating the criteria in a Search Strategy to determine

whether or not to include the position in the search results.

Example:
The following statement obtains the Delta of the modeled position and assigns it to the

variable Valuel:

Val uel = Delta of Model Position;

NumlLegs

This reserved word returns the number of legs in the position being analyzed. It enables
you to know exactly how many legs are open at any point in time.

Syntax:
Nunmiegs data alias

204 Writing OptionStation Indicators CHAPTER 5

Parameters:
None; however, you must specify Of Position or Of ModelPosition (Of is a skip word that
makes the expression easier to read).

Example:
The following loop adds the total cost of all legs in a position and stores the result in the
variable Sum:

Variabl e: Sun(0);

For Valuel = 1 To NumLegs of position Begin
Sum = Sum + Cost of |eg(Val uel);

End;

Writing OptionStation Indicators

An indicator is a mathematical formula that returns a value. These values are displayed

either in a grid, like in the OptionStation Position Analysis window, or in a price chart.

This section first covers writing indicators for the Position Analysis window, and then dis-
cusses writing indicators for price charts.

In the Position Analysis window, shown in Figure 5-3, you have three sections available
for your analysis: the Assets section, the Options section, and the Positions section.

The Assets section refers to the underlying asset (or assets) used as the basis for the

analysis window, the Options section includes information on all of the options available
in the GlobalServer for the asset(s), and the Positions section includes all the information
about any position(s) added to the Position Analysis window. You can write indicators

EasyLanguage for OptionStation Writing OptionStation Indicators 205

to use data from any of the three sections in order to calculate and display custom

information.
":ﬁ:' OptionStation Analysis - Microsoft Corp
Pos1 Met Change |Percent Change | Total Waolume | Tre
Aszets s — Last (Day) (Day) High (Dayi|Lovwr (Day) (Day)
Assets 1 MSFT 825 1.500 1.85% G54 S0 45,050,300
d| | 2
X Pos=1 Met Change (Percent Change | Total Wolume | &
Options TS = Last (Day) (Day) High (Dary)| Lo (Day) (Day)
1] msQEA By -0.063 14.29% 0, E 2,700
Options 2 | MImER £ Byg 0.750 13.33% EE 52, 4400
[3| Ms@EQ 352 312 0.250 TA4% 48, 2, 9,200
BRETE | oooo R 0125 B.25% 28y 18y 4,200
5| MSQES | o.ooo [0125 A1.1% 18 oy 1,400
[6] M3QET | 0.000 | g -0.063 -10.00% ey g 3100 |-
4| | »
- Fositions Grass In Fross Out Sross PEL . Prok%: Calculstor
Q. owE gl 10wy Loy WEEN OMpPOonEnts
Position Actusl Sealive] Ahove High % | Below Low % [Bet % | C it
| 1] Pos1 (318123500 §1,512.50 F0.00 23.55% 2373% a0.38% High Target =9
q] | il

Figure 5-3. OptionStation Position Analysis window

Since all of the information on the underlying asset(s), options, and option positions is
available to you through EasyLanguage, you can create OptionStation indicators that use
any of this information.

However, if you apply an indicator referencing position information to the Assets or Op-
tions sections of the Position Analysis window, you will obtain zero values. You cannot ref-
erence position information from the Assets or Options sections. Due to the nature of the
Position Analysis window, it is of no analytical value to reference position information in
the Assets or Options sections; therefore, OptionStation does not allow it.

The next section describes the reserved words used to create indicators.

206 Writing OptionStation Indicators CHAPTER 5

Plot Statements

The reserved words used to create indicators result in statements referred to as plot
statements because they control how information is displayed, or plotted, either in a grid
(the Position Analysis window) or in a price chart.

PlotNum(Expression, **PlotName"*, ForeColor, BackColor)

Displays values, resulting from a mathematical calculation or an expression, in a price
chart or grid. For price charts, the values displayed can be only numeric, whereas for
the Position Analysis window, the values can be numeric, true/false, or string.

Syntax:
Pl ot Num(Expression [, "<PlotName>" [, ForeColor [, BackColor]]]);

Parameters: _))
Num is a number between 1 and 4, representing one of the four available plots. Expression

is the value that will be plotted, and <PlotName> is the name of the plot. ForeColor is an
EasyLanguage color that will be used for the plot foreground, and BackColor is an Easy-
Language color that will be used for the plot background. The parameters <Plot Name>,
ForeColor, and BackColor are optional.

For a list of the available colors, refer to Appendix B of this book.

Notes:
The background color setting has no effect when the indicator is applied to a price chart.

Notes:
There is a category of reserved words called Quote Fields. These words enable you to ac-

cess snapshot information from the datafeed, and allows indicators applied to OptionSta-
tion to use less memory and be more efficient; in other words, to optimize its performance.
They are very useful for performing analysis on intraday minute and tick bars and referenc-
ing the current day’s information (e.g., daily high, low, open). For information on Quote
Fields, refer to Chapter 2, “The Basics EasyLanguage Elements.”

Example:

Any one or more of the optional parameters can be omitted, as long as there are no other
parameters to the right. For example, the Width parameter can be excluded from a state-
ment, as follows:

Plot1(Strike of option, “Strike”, Black, Wite);

But the plot name cannot be omitted while specifying the colors and/or the width. So the
following example will generate a syntax error because the name of the Plot statement is
expected:

Incorrect:
Plot1(Strike of option, Black, Wite, 2);

Correct:
Plot1(Strike of option, “Strike”, Black, Wite, 2);

The only required parameter is the value that is plotted. So the following statement is valid:

EasyLanguage for OptionStation Writing OptionStation Indicators 207

Plot1(Strike of option);

When no plot name is specified, EasyLanguage assigns Plot1, Plot2, Plot3, or Plot4, in that
order, as the plot names for each respective plot.

Whenever referring to the foreground color, background color, or the width, the word De-
fault can be used in place of the parameter(s) to have the Plot statement use the default color
and/or width selected in the Properties tab of the Format indicator dialog box.

For example, the following statement can be used in order to display the strike price of an
option with the default foreground and a yellow background:

Plot1(Strike of option, “Strike”, Default, Yellow);

The same plot number (i.e., Plotl, Plot2, etc.) can be used more than once in an analysis
technique; the only requirement is that you use the same plot name in both instances of the
Plot statement. If no name is assigned, then the default plot name is used (Plot1, Plot2, etc.).

For example, if you want to plot the net change using red when it is negative and green
when it is positive, you can use the same plot number (in this case Plotl) twice, as long as
the name of the plot is the same.

Val uel = Theoretical Val ue of option - Cl ose of option;

If Valuel > 0 Then
Plot1(Valuel, “TValue”, G een)

El se
Plot1(Valuel, “TValue”, Red);

In this example, the plot name “TValue” has to be the same in both instances of the Plot
statement.

SetPlotColor(PlotNumber, Color)

This reserved word is used to change the foreground or plot color of a particular plot,
and can be used when applying indicators to a price chart or a Position Analysis window.

Syntax:
Set Pl ot Col or (Pl ot Nunber, Col or);

Parameters:
PlotNumber is a number from 1 to 4 representing the number of the plot to modify. Color

is the EasyLanguage color to be used for the plot.

Notes:
This reserved word changes the color of the plot; the reserved word described next,

SetPlotBGColor, changes the background color of the plot (for use only with the Position
Analysis window).

For a list of the available colors, refer to Appendix B of this book.

208 Writing OptionStation Indicators CHAPTER 5

Example:

The cglor of the plot can be changed for each price; for example, if the indicator value is
negative, the plot can be displayed in red, and when the indicator value is positive, the
plot can be displayed in green. The following statements show how to modify the color
of an indicator; in this case, the Momentum Indicator:

Pl ot 1(Moment un(d ose of asset, 10), “Mnentuni);

If Plotl > 0 Then

Set Pl ot Col or (1, G een)
El se

Set Pl ot Col or (1, Red);

SetPlotBGColor(PlotNumber, Color)

This reserved word is used to change the background color of the cell where the value
of the plot is displayed. This reserved word works only when the indicator is applied to
the Position Analysis window; it is ignored when applied to a price chart.

Syntax:
Set Pl ot BGCol or (Pl ot Nunber, Col or);

Parameters:
PlotNumber is a number from 1 to 4 identifying the plot to modify, and Color is the
EasyLanguage color to be used for the background of the cell.

Notes:

The color of the plot can be set as you create the plot, by using the reserved word
PlotNum; this reserved word is used to change the color on a value by value basis. For
example, if a symbol is overpriced, an indicator can change the background color of
the cell to red, when a symbol is underpriced, the indicator can change it to green.

For a list of the available colors, refer to Appendix B of this book.

Example:
The following statements color the background of the cell red when the RSI Indicator
is over 75, and green when it is under 25:

Pl ot 1(RSI (Cl ose of asset, 9), “RSI")

Set Pl ot B&Col or (1, Default);

If RSI(Close of asset, 9) > 75 Then Set Pl ot BGCol or (1, Red);
If RSI(Close of asset, 9) < 25 Then Set Pl ot BGCol or (1, G een);

In this example, the RSI Indicator has three possible colors: red when it is over 75,
green when it is below 25, and the default color when it is between 25 and 75. If you
only set two colors, one for over 75 and one for under 25, it would remain one of the
two colors (which ever it was set to last) when it is between 25 and 75. What you need
to do is reset the plot color to a default color every bar so that it is only red when above
75 and green when below 25. The rest of the time it is the default color. In this example,
we used the SetPlotBGColor reserved word to reset the plot to the default color.

EasyLanguage for OptionStation Writing Indicators for SuperCharts SE 209

You can also set the default color of the plot using the PlotNum reserved word. If you
set the default color in the PlotNum statement, then you don’t have to use the first
SetPlotBGColor statement; instead your instructions would be as follows:

Pl ot 1(RSI (O ose of asset, 9), “RSI", Default, Default)

If RSI(C ose of asset, 9) > 75 Then
Set Pl ot BGCol or (1, Red);

If RSI(Close of asset, 9) < 25 Then
Set Pl ot BGCol or (1, G een);

Writing Indicators for SuperCharts SE

This section discusses how to write indicators for use with SuperCharts SE, and is
intended only for those who have purchased OptionStation only, in which case, you
have SuperCharts SE available for your charting and technical analysis needs. Please
review the section titled, “Writing OptionStation Indicators,” and then continue with
this section.

If you purchased ProSuite 2000i or TradeStation, you will have TradeStation available
for your charting and trading strategy testing needs, and you should refer instead to the
chapter of this book titled, “EasyLanguage for TradeStation,” for information on
writing trading signals, indicators, and studies for use with TradeStation.

210 Writing Indicators for SuperCharts SE CHAPTER 5

Writing Indicators

Indicators calculate a mathematical formula and display their values on a chart. When
you apply an indicator to a price chart, you can format the indicator to display their
values in different ways; for example, as shown in Figure 5-4, you can format the
indicator to display as a line chart, as a histogram from the bottom of the chart, or as a
series of dots, etc.

18 SuperCharts SE Chart - (MSFT) Microsoft Corp LAST - Daily !EI
MEFT LAST-Daily 087261994 F56.000
i | | : il
| | | T A K
| | o | A
i i Jl 7"-. i $ 48000
: :]f 4. : {{ -:
! |ﬂ 'Wlll ilH , {ni o .&ﬁ} N
i o4 i ”Tf T
1 Il “}HH#‘J:’- : ’ ‘-Jg s : L10.000
1 . : . :
'}ht | | | |
Momentum(CIosem) 1359 .))
il
i|I|:I|.|,.“,I |.II|I||||I ol "II‘H" e,|||||| | |||—n.uu
RSI(CIUSEJI4,30,?D,Green,nﬂagenta) G783 30000 70.00 I
A Lo i P
| N e e
i | , | | 30.00
iI1.|1ar i.-“\pr ih.|1ay i.Jun i.JuI
Kl] 2

Figure 5-4. Different forms of indicators

You can even format the properties of an indicator to display as a bar chart. For
example, in the case of an indicator with three plots, such as the 3-Line Moving
Average Indicator, you can format the indicator and set one plot to bar high, another
to bar low and another to right tick The 3-Line Moving Average indicator displayed as
a bar chart is shown in Figure 5-5.

EasyLanguage for OptionStation Writing Indicators for SuperCharts SE 211

Format Indicator- Mov Avg 3 lines [X]

Inputs Stk | Soaling | Propetties |

& Simpdvgl

™
‘H]HI‘: I l‘!lml € Sinpdega

iy l(”ll"

Mo Avg 2 |H’]ES(C|USE 4, 9 18,0y 92984 090.340 B? 19

|HH| 'HH
||H””|||H HHH 1 e |

\

\

\

HH““HIM ”.; > I I T
Jun Jul Aug

[]

Type Color

Bar High Z e -

Line
Histogiam

Figure 5-5. Indicator formatted to display.as a bar chart

For more information on formatting indicators, please refer to the Online User Manual.
Also, make sure you understand the concept of scaling with respect to price charts and
indicators. Using different scaling can dramatically alter the display of your indicators.
For information on scaling, search the Online User Manual Answer Wizard for
Indicator Formatting.

You use two of the same plot statements to create an indicator for use in a price chart
as you do for use in the OptionStation Position Analysis window, PlotNum and
SetPlotColor; however, there are some parameters for these plot statements that apply
only when working with price charts. Therefore, the plot statements are discussed
again, this time with the focus on the parameters and considerations that apply when
working with price charts.

PlotNum(Expression, “<PlotName>", ForeColor, BackColor, Width)

Displays values, resulting from a calculation or an expression, in a price chart. For price
charts, the values displayed can only be numeric.

Syntax:
Pl ot Nurm(Expr essi on[, “ <Pl ot Nane>" [, For eCol or, [Back-

Color,[,Wdth]]1]1);

Parameters:
N is a number between 1 and 4, representing one of the four available plots. Expression is

the numeric value that will be plotted, and <PlotName> is the name of the plot. ForeColor
is an EasyLanguage color that is used for the plot, BackColor specifies the background col-
or (for use only with the OptionStation Position Analysis and RadarScreen windows), and
Width is a numeric value representing the width of the plot. The parameters <PlotName>,
ForeColor, BackColor, and Width are optional.

212 Writing Indicators for SuperCharts SE CHAPTER 5

For a list of the available colors and widths, refer to Appendix B of this book.

Notes:
The BackColor parameter has no effect when plotting the indicator in a price chart window;
however, it is required in order to specify a width, as discussed in the example.

Example:

Any one or more of the optional parameters can be omitted, as long as there are no other
parameters to the right. For example, the BackColor and Width parameters can be excluded
from a statement as follows:

Plot1(Volume, “V', Black);
But the plot name cannot be omitted if you want to specify the plot color and width. For

instance, the following example generates a syntax error because the name of the plot state-
ment is expected:

Incorrect:
Pl ot1(Vol unme, Black, Wite, 2);

Correct:
Pl ot1(Vol ume, “V', Black, Wite, 2);

The only required parameter for a valid Plot statement is the value that will be plotted. So
the following statement is valid:
Pl ot 1(Vol une) ;

When no plot name is specified, EasyLanguage will use Plot1, Plot2, Plot3, or Plot4 as the
plot names for each plot. The first plot will be named Plot1, the second Plot2 and so on.

Whenever referring to the plot color or width, you can use the word Default in place of the
parameter(s) to have the Plot statement use the default color and/or width selected in the
Properties tab of the Format indicator dialog box.

For example, the following statement can be used to display the volume in the default color
but a specific width:

Plot1(Volune, “V', Default, Default, 3);

Again, you can use the word Default for the color parameters or the width parameter.

Also, the same plot (i.e., Plot1, Plot2) can be used more than once in an analysis technique;
the only requirement is that you use the same plot name in both instances of the Plot state-
ment. If no name is assigned, then the default plot name is used (i.e., Plotl, Plot2).

For example, if you want to plot the net change using red when it is negative and green
when it is positive, you can use the same plot number (in this case Plotl) twice, as long a
the name of the plot is the same:

EasyLanguage for OptionStation Writing Indicators for SuperCharts SE 213

Val uel = Cose - Cose[l];

If Valuel > 0 Then

Plot1(Valuel, “NetChg”, Geen)
El se

Plot1(Valuel, “NetChg”, Red);

In this example, the plot name “NetChg” must be the same in both instances of the Plot
statement.

Note: Once you have defined a plot using the PlotNum reserved word, you can
reference the value of the plot simply by using the reserved word, PlotNum. In the
example below, the reserved word Plot1 is used to plot the accumulation distribution
of the volume. The value of the plot is referenced in the next statement, in order to write
the alert criteria:

Pl ot 1(AccunDi st (Vol ume), "AccunDist") ;

If Plotl > Highest(Plotl, 20) then Alert

SetPlotColor(Number, Color)

This reserved word is used to change the color of a particular plot in a price chart
window.

Syntax:
Set Pl ot Col or (Nunber, Col or);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Color is
the EasyLanguage color to be used for the plot.

For a list of the available colors, refer to Appendix B of this book.

Example:
The following EasyLanguage statements color the plot red when the RSI Indicator is
over 75, and green when it is under 25:

Plot1(RSI (Cl ose, 9), “RSI")
Set Pl ot Col or (1, Default);

If Plotl > 75 Then

Set Pl ot Col or (1, Red);
If Plotl < 25 Then

Set Pl ot Col or (1, Green);

In this example, the RSI Indicator has three possible colors: red when it is over 75,
green when it is below 25, and the default color when it is between 25 and 75.

214

Writing Indicators for SuperCharts SE CHAPTER 5

If you only set two colors, one for over 75 and one for under 25, it would remain one
of the two colors (which ever it was set to last) when it is between 25 and 75.

What you need to do is reset the plot color to a default color every bar so that it is only
red when above 75 and green when below 25. The rest of the time it is the default color.
In this example, we used the SetPlotColor reserved word to reset the plot to the default
color.

You can also set the default color of the plot using the PlotNum reserved word. If you
set the default color in the PlotNum statement, then you don’t have to use the first
SetPlotColor statement; instead your instructions would be as follows:

Plot1(RSI (Close, 9), “RSI”, Default)

If Plotl > 75 Then
Set Pl ot Col or (1, Red);

If Plotl < 25 Then
Set Pl ot Col or (1, Green);

SetPlotWidth(Number, Width)

This reserved word sets the width of the specified plot.

Syntax:
Set Pl ot W dt h(Nunber, Wdth);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Width is
the EasyLanguage width to be used for the plot.

For a list of the available widths, refer to Appendix B of this book.

Example:
The following EasyLanguage statements change the width of the plot to a thicker line
when the Momentum Indicator is over 0, and to a thinner line when it is under 0:

Pl ot 1(Moment un{ d ose, 10), “Monentuni) ;

If Plotl > 0 Then
Set Pl ot Wdth(1, 2);

If Plotl < O Then
Set Pl ot Wdth(1, 6);

In this example, the Momentum Indicator has two possible widths: thicker when it is
over 0, and thinner when it is below 0. However, in some cases you will want the
indicator to have three or more possible widths. Please refer to the example for the
previous reserved word, SetPlotColor for a variation on the usage of the reserved word.
The same applies for SetPlotWidth.

EasyLanguage for OptionStation Writing Search Strategies 215

Specifying Availability of Indicators

When you create an indicator in the EasyLanguage PowerEditor, you are prompted to
specify the applications (i.e., price chart, Position Analysis window) for which your
indicator will be available. By available, we mean it will appear in the library of
indicators to apply when you choose to insert an indicator into the application.

The choices available to you depend on which TradeStation Technologies product(s)
you purchased. For example, if you purchased ProSuite 2000i, by default, the indicator
will be available in TradeStation charts, RadarScreen, and all sections of the Position
Analysis window.

For information on specifying the applications for which your indicator is available,
search the Online User Manual Answer Wizard for the phrase Specifying Applications.

Writing Search Strategies

The OptionStation Position Search Wizard allows you to search through all available
options for those that meet your criteria and rank them in order of theoretical
profitability based on your market assumptions. One criteria you must specify before
completing the Position Search Wizard is a Search Strategy. The Position Search
Wizard provides many built-in Search Strategies—Bear or Bull Credit Spreads,
Butterfly Calls, Straddles, Strangles, etc.—but you can also create your own for use in
the Position Search Wizard.

In order to create a Search Strategy, you must first understand how the Position Search
Engine works.

216 Writing Search Strategies CHAPTER 5

The Position Search Engine

The OptionStation Position Search Engine obtains and evaluates every possible combina-
tion of options based on the assumptions and the Search Strategy or Strategies you’ve spec-
ified in the Position Search Wizard. It then lists the positions found (up to 50) sorted in
order of theoretical profitability.

For example, let’s assume we used a Search Strategy that specifies writing one call and
three puts with Delta close to neutral, and we are analyzing Microsoft options.
Microsoft is at 95, and we think it will not move much from here to December 17 (the
expiration date we specified).

We want the Delta as close to delta neutral as possible because we think MSFT will not
move, but if it does, the calls and puts will not change much in value and hopefully will
expire either at a lower price than we sold them for, or worthless (leaving us with at
least the money we got up front as the premium).

When we run the Position Search, the OptionStation Position Search Engine will go
through every combination of one call versus three puts and do the following process
on each, one at a time:

1. Runthrough the Search Strategy and determine if it evaluates to True. In other words,
see if the current combination of one call and three puts it meets the criteria specified
by the Search Strategy. If not, it will obtain a different combination of one call versus
three puts and evaluate again until it finds a position that meets the criteria

2. Assoon as it finds a position that meets the criteria of the Search Strategy, the four
options making up the position are run through the Price Modeling Engine using
the current values (date, time, price and volatility) of the underlying symbol in
order to find all the values the models offer for each one of the four options. Then
a position is established by buying (on the modeled ask) or selling (on the modeled
bid) each one of the legs of the position.

3. Then, the Position Search Engine calls the Price Modeling Engine and runs the
position through it using the search assumptions (date, time, price and volatility)
for the underlying symbol in order to find all the values the models offer. Then the
position is exited by selling (on the modeled bid) or buying (on the modeled ask)
each one of the legs. Subtracting this from the values obtained in Step 2 (minus
commission) results in the theoretical profit of the position based on the
assumptions.

4. The results for this position are saved in the Position Search report if it is one of
the 50 most profitable.

If there are more option combinations to test, the Position Search Engine begins again
at Step 1. Once there are no more option combinations to test, OptionStation lists up to
fifty (50) of the most profitable positions (theoretically) in the Position Search window.

Three of the more important dialog boxes of the Position Search Wizard are discussed next:
the Holding Period, Volatility, and Underlying Target Price.

EasyLanguage for OptionStation Writing Search Strategies 217

The Holding Period

The objective of a Position Search is to find the best position, based on some price and
volatility assumptions, at a specific point in time. This point in time can be the present,
or any other date in the future. The first dialog box of the Position Search Wizard, the
Holding Period dialog box, shown in Figure 5-6, enables you to specify the date on
which the valuation of the positions will be performed.

I Holding period I

1~ Holding period

Specify the date to close the position. Position 5 earch needs to knaw how long pou
want to hold the position. For example, if pou want to close the position 20 days from
today, select the second radio button

" Close the position at the end of the session on the nearest expiration date
" Close the position after |20 day(s] at the end of the session

* Llose the posiion ot | 8151593 7| ot [4:03:47 P 25 Local Tine

< Back I Hext > I Cancel Help

Figure 5-6. OptionStation Position Search Wizard holding period

You have three choices:

Close the position at the end of the session on the nearest expiration date
Close the position after X day(s) at the end of the session
Close the position at a specific date and time (local time)

Your choice gives OptionStation a specific date to work with to calculate the valuation of
all positions.

Volatility

Volatility is defined as a measure of the amount by which an underlying asset is
expected to fluctuate in a given period of time. It is generally measured by the annual
standard deviation of the daily price changes in the asset. Volatility is an important
factor in working with accurate options data.

218 Writing Search Strategies CHAPTER 5

You have three choices when specifying the volatility to use during the Position
Search. They are shown in Figure 5-7.

Volatility

- Wolatility assumption:

Volatility is an impartant part of determining option position valuss. Fosition Search wil
caloulate the curent volatity based on the Violatity Madel selected. or you can specify
your own volatiity sssumptions here

& ise the curment volatiiyy for each underlying assek
" Use a walatiity range of |10 % above and below the current volatiity

" Specily arange of volatility for each underlying asset

Asset |_High Volatility | Low Volatility |
MSFT (DayBar) | 15] 15

< Back I Mext> I Cancel | Help

Figure 5-7. OptionStation Position Search Wizard volatility assumptions

Use current volatility for each underlying asset
OptionStation will use the volatility obtained from the OptionStation Price Modeling En-
gine calculated using the most current data available.

Use a volatility range of X% above and below the current volatility

OptionStation uses the percentage specified above and below the current volatility (ob-
tained from the Price Modeling Engine) and calculates the profitability of each position us-
ing the high and low volatility values.

Specify a range of volatility for each underlying asset

You select the high and low values for the range of volatility expected during the holding
period. OptionStation calculates the profitability of each position using these high and low
values.

Underlying Asset Target Price

In the Underlying Asset Target Price dialog box, you specify the expected movement
of the underlying asset during the holding period specified. The OptionStation Search
Engine then values each position’s profit at the ending date and time of the holding
period, using the volatility and price assumptions specified.

EasyLanguage for OptionStation

Writing Search Strategies 219

Your three target price assumption choices are shown in Figure 5-8:

Underlying Asset Target Price

~ Target price assumption:

This is whers you spacify pour price movement assumplions for the underlying assel. For
example, if you think IBM is going o make a10% move sbove the current price, enter that
Calls, Lalls idea here.

Eu{ _ ™ se the cument price as the target price for each underlying asset
uts

10 % Iahove | the cument price

taiget price rangs for each underling assel

Asset | Pprice1 | Pricez | Style |
MSFT (DayBar) | | |Eseactly Price 1 |

< Back I Nest > I Cancel I Help

Figure 5-8. OptionStation Position Search Wizard - target price assumptions

Use the current price as the target price for each underlying asset

The OptionStation Search Engine uses the current price of the underlying asset as the
target price at the end of the holding period.

Use a price target for each asset X% above/below the current price

The OptionStation Search Engine uses the specified percent above or below the current
price of the underlying asset as the target price at the end of the holding period to value
the profit or loss of each position.

Specify a target price style and a target price range for each underlying asset

The following are available under this choice:

Exactly Price 1

The OptionStation Search Engine uses the specified price with the volatility
assumptions at the end of the holding period to value the profit or loss of each
position.

Pricel to Price2

This setting accepts a target price range instead of a single value. The
OptionStation Search Engine divides the specified range by 100, and values
each position on each one of the 100 prices.

For example, if the search is to look for the bullish limited risk Search Strategy
with the best profit, and the position will be held 30 days, assuming that
current volatility will be maintained and the price range expected is between
1330 and 1340, the OptionStation Search Engine will value each bullish
limited risk Search Strategy using an underlying asset price of 1330, then
1330.1, 1330.2, 1330.3, etc. until it reaches 1340. It will call on the Price

220

Writing Search Strategies

CHAPTER 5

Modeling Engine to valuate each position through 100 valid prices in the price
range and will select those with the highest resulting P/L.

If the volatility assumption is also a range, the OptionStation Search Engine
will run through 100 tests for each one of the volatility values. So it will value
each position a total 200 times.

Pricel to Price2 using probability

This works the same as Pricel to Price2 except that when all the resulting 100
values of the test are done, the resulting profit or loss of each test is multiplied
by the probability of the underlying asset reaching that particular target price.

This means that if a particular position is extremely profitable, but the
statistical probability of the underlying asset reaching that level is very low,
the position will be penalized by lowering the resulting P/L in order to favor
other results that have better statistical chances of occurring.

The probability of the underlying asset reaching the specified price is
calculated in the same way as the Probability Calculator Indicator provided
with OptionStation. The following is the calculation performed when the
target price is above the current price:

ExpDays = Squar eRoot (Near Days * .002739);

StdDl = Log(Pricel/d ose of asset) / (Volatility *
ExpDays) ;

AnswerH = 1 - Nornmal SCDensity(StdDl);

And, the following is the calculation performed when the target price is under the
current price:

ExpDays = Squar eRoot (Near Days * .002739);

StdD2 = Log(Price2/C ose of asset) / (Volatility *
ExpDays) ;

Answer L = Nor mal SCDensi ty(St dD2) ;

Where NearDays is the number of days left until the holding period is over, and
NormalSCDensity is the Normal Standard Cumulative Density calculation.

Pricel +/- X volatilities

This method of determining the price assumption is similar to the price range
methodology, only that the high and low values of the price range are determined
by adding and subtracting X number of standard deviations based on the current
volatility of the underlying asset from the target price specified. The same evalu-
ation methodology as described in Pricel to Price 2 is used.

EasyLanguage for OptionStation

Writing Search Strategies 221

Pricel +/- X volatilities using probability

This method of determining the price assumption is similar to the price range
methodology, only that the high and low values of the price range are determined
by adding and subtracting X number of standard deviations based on the current
volatility of the underlying asset from the target price specified. The same evalu-
ation methodology as described in Pricel to Price 2 using probability is used.

222 Writing Search Strategies CHAPTER 5

Position Search Reserved Words

Every Search Strategy must contain the following two reserved words: CreatelLeg and
PositionStatus.

CreatelLeg(Contracts, LegType)

This reserved word is used to create a leg for a position.

Syntax:
CreateLeg(Contracts, LegType)

Parameters:
Contracts is the number of contracts, and LegType is Call, Put, or AssetType.

Notes:

Contracts is the number of contracts (or shares) with which this leg will be created. If a pos-
itive number is used, then the leg will purchase the specified number of contracts; if a neg-
ative number is used, then the leg will sell (or write) the specified number of contracts.

LegType can be Call, Put, or AssetType, and defines what instrument to use for the specific
leg. Call and Put are self-explanatory; AssetType specifies to use shares/contracts of the un-
derlying asset.

Figure 5-9 shows a table with the combination of possible alternatives when working with
the CreatelLeg reserved word:

Contracts | Leg Tipe Interpretation

i Call Buy n call contract(s)

-n Call Wite n call contract(s)

i Put Buy n put contract(s)

-n Fut Wite n put contract(s)

il AssetType Buy n sharesicontractis) of underlying

-h AssetType Sell (shorty n sharesicontrac{s) of underlying

Figure 5-9. CreateLeg variations

Example:
See the example for the reserved word PositionStatus.

EasyLanguage for OptionStation Writing OptionStation Models 223

PositionStatus(Condition)

This reserved word determines whether or not the position is valid based on your own
criteria, and therefore accepted for evaluation in the Position Search results.

Syntax:
Posi ti onSt at us(Condi ti on)

Parameters:)
Condition is any true/false expression.

Notes:

When an expression that evaluates to True is passed to this reserved word, the position
is accepted and considered for the search results; if it evaluates to False, the position is
discarded.

Example:
For example, the following instructions are used to create a position that consists of buy-
ing only in-the-money calls:

CreatelLeg(1l, Call);
Conditionl = (Strike of leg(1l) < Close of asset);

Posi ti onSt at us(Condi tionl);

Writing OptionStation Models

Writing OptionStation Models (Pricing, Volatility, and Bid/Ask) in EasyLanguage is
more of an exercise in translating the mathematical procedures of calculating these
values into EasylLanguage than anything else. In order to do this, you only need to be
aware of how to read all the option-related data (see the previous section in this chapter
titled, “Reading OptionStation Data”) and EasylLanguage syntax.

This section describes how OptionStation performs its calculations, along with the
reserved words you’ll use to create your own models.

224 Writing OptionStation Models CHAPTER 5

The Price Modeling Engine

OptionStation uses the Price Modeling Engine for now-analysis and future-time
analysis.

The now-analysis consists of evaluating the Pricing Model using the most current price
information for the underlying asset and all the options, as well as the current date and
time to run through the Price Modeling Engine. This is done primarily in the Position
Analysis window to keep track of the current option chain and positions on a real-time
and/or delayed basis.

The future-time analysis consists of evaluating the Pricing Model using market
assumptions. By changing the date and time, underlying price, or volatility,
OptionStation can determine how much a position may be worth under specific
circumstances. This is done during the Position Search and in the Position Chart
window, where OptionStation finds the best position given a user-specified market
assumption.

The mathematics of Pricing, Volatility, and Bid/Ask Models is very complex and
advanced, and the purpose of this section is to explain how these models are used by
OptionStation, not to explain their rationale or mathematical principles.

In order for a Pricing Model to produce valuable results, it must have all of the following
pieces of information:

1. Price of the underlying asset
2. Strike price of the option

3. Interest rates

4. Time to expiration of option
5. Volatility

The price of the underlying asset and the strike price of each option are provided by the
GlobalServer. The interest rates are somewhat of a constant number that can be input into
the OptionStation Pricing Model by the user. The time to expiration of the option is fixed
and therefore easily calculated by OptionStation. Volatility is the value most open to inter-
pretation, as there are several methods used to calculate it, depending on your preference
and the data available.

Once the Price Modeling Engine has received the first four pieces of information, it will
run through the OptionStation models and will derive MIV (Market Implied Volatility) on
raw Bid and Ask; MIV on Last; Theoretical Value of the option; Delta, Gamma, Rho, The-
ta, Vega; modeled Bid and Ask; M1V on modeled Bid and Ask; and modeled Volatility (hot
necessarily in that order).

When the Price Modeling Engine finishes calculating, all this information is available for
the analysis of the options and underlying asset.

The Price Modeling Engine enhances the options data that is sent from the datafeed to the
GlobalServer and OptionStation with all the option-specific data mentioned before. All this
is done through a five-step iterative process, described next.

EasyLanguage for OptionStation Writing OptionStation Models 225

The Five-Step Iterative Process

The OptionStation Price Modeling Engine calculates all prices through a five-step process.
This process includes three different models: Pricing Model, Volatility Model, and Bid/Ask
Model. Figure 5-10 illustrates this five-step process.

Sart of Frocess

|

Ca = e,
Step 5
Etﬂp1 SDBFIH Fmci FIH'l‘l |
Pricing Model Pricing hods! HIng vods
L r) - -
MY on macs

WY on Bad Thaoredcal Eid, Ask and
Bl i sk '_'-:"UE and Manrahical
I o Last e kG alia

— e
Step 2 Step 4
latiity RModal BickAsk Moadel

Whiodel Vaolabhby Mochal Blid aned fush

Figure 5-10. OptionStation Five-Step Pricing Model Engine

This process is repeated for every option available to OptionStation at a particular moment.
In other words, OptionStation iterates through this process as many times as there are op-
tions in the symbol portfolio for the underlying asset being analyzed.

Step 1: Obtaining MIVs from the Pricing Model

The objective of this step is to find the Market Implied Volatility (MIV) for the raw last,
Bid, and Ask sent by the datafeed for an option. This is an iterative process (as shown in
Figure 5-10) which intelligently picks different volatility values to run the Pricing Model
in order to estimate what volatility is needed to derive a price equaling the last, Bid, and
Ask values received from the GlobalServer.

Therefore, knowing the last traded price of the underlying asset, the strike, and days to ex-
piration of the option, the interest rate and the last traded price of the option,
OptionStation iterates through the Pricing Model, feeding it different volatility values in or-
der to try to approximate as closely as possible the result of the Pricing Model to the last
price transmitted from the datafeed. The same is also done with the Bid and Ask values.

From this process OptionStation derives the MIV on Close, MIV on Bid, and MIV on Ask.

226 Writing OptionStation Models CHAPTER 5

Step 2: Volatility Model

The objective of this second step is to find the volatility for a particular option. The Vola-
tility Model will calculate the volatility for each option using the raw MIV values derived
in Step 1 and a Newton-Raphson search method using the option’s VVega (for a description
of this method, refer to Option Volatility & Pricing, by Sheldon Natenberg, McGraw-Hill,
1994. Page 446).

Step 3: Pricing Model

The objective of this third step (and second pass through the Pricing Model) is to calculate
the Theoretical Value (TV) of a particular option as well as all its Greek values (Delta,
Gamma, Theta, Rho, and Vega).

Using the underlying asset’s price, strike price, and days to expiration of the option, the in-
terest rates, and the model volatility calculated in Step 2, OptionStation will run through
the Pricing Model and set the Theoretical Value of the option and all its Greek values.

Step 4: Bid/Ask Model

The objective of this fourth step is to calculate modeled Bid and Ask values for the option.
Given that Bid and Ask prices are not always accurately transmitted by the datafeeds, it is
sometimes desirable to have modeled Bid and Ask values.

When a Bid/Ask Model other than raw Bid and Ask is selected, the Bid/Ask Model uses all
the values obtained during the first three steps and calculates smart Bid and Ask values to
replace values transmitted from the datafeed.

Step 5: Obtaining Modeled MIVs with the Theoretical Model

This fifth step (and third pass through the Pricing Model) is done with the intention of cal-
culating the MIV values for the modeled Bid and Ask calculated in Step 4. As in Step 1,
this is an iterative step, where the Volatility Model and Vega are run repeatedly with dif-
ferent values for volatility attempting to find the MIV for the smart Bid and Ask values ob-
tained in Step 4.

EasyLanguage for OptionStation

Writing OptionStation Models 227

Update Logic of the Price Modeling Engine

The five-step process is performed for every option available for the underlying asset. In
other words, OptionStation will run through this process for each and every option avail-
able in the GlobalServer for the underlying asset specified.

In spite of all the optimizations in place to speed up this process, performing it for every
option is still a very labor-intensive task. Therefore, OptionStation provides three different
update logic choices, as shown in Figure 5-11.

Format Models B=

Faormat Models |

— Option Madel
Fricing Model

IBIackSchUIes j Farmat Modal.._l

Wolatility kM odel

I Implied Weighted Awg j Fornat Model... |

SmartBid/Smartdsk Madel

IEIose Of Option j Farmnat Model.._l

~ Calculation Dependencie;
¥ Update on trade tick [T Update on Bid/4sk tick

Update style

IUpdale each symbol az it ticks or the underlying ticks

Set [efault |

U pdate each symbol as it ticks

T OF. | Cancel | Aol | Help |

Figure 5-11. OptionStation Update Logic

They are:

Update all symbols for this underlying when any symbol for this underlying
ticks. All values for all options are calculated whenever there is an update in any
of the underlying asset or option symbols. This is the most labor-intensive mode
of OptionStation and in most instances, it will result in unnecessary calculations
as all modeled values are re-calculated on a constant basis as ticks are received
from the datafeed.

Update each symbol as it ticks or the underlying ticks. This is the
recommended setting; when the specific option ticks, the modeled values are
updated; and when the underlying asset ticks, the modeled values for all options
are updated.

Update each symbol as it ticks. This setting is the least labor-intensive choice;
the modeled values for the specific option are updated when the option ticks. The
modeled values are not updated when the underlying asset ticks.

The three settings above can be based on either every trade tick and on every Bid and Ask
tick that is received from the datafeed, or on both, by selecting the appropriate Calculation
Dependencies check box.

The reserved words used to write your own models are discussed next.

228 Writing OptionStation Models CHAPTER 5

Model Reserved Words

Most of the Model reserved words function as “set” words, in that they set the different
values for the options (e.g., Theoretical Value, Delta). These same words, when used
in the other EasylLanguage documents, obtain the values rather than set them.

TheoreticalVValue(num)

This reserved word is used in the Pricing Model to set the Theoretical Value of the
option. When this reserved word is used in another analysis technique, it is used to
obtain the Theoretical Value of the option.

Syntax:
Theoreti cal Val ue(num

Parameters: _)) _ _
Num is a numeric expression representing the Theoretical Value of the option. This param-

eter is needed only when setting the value in the Pricing Model, not when obtaining it.

Example:
For example, when writing a Pricing Model, if the value of the Theoretical Value is stored
in the variable Valuel, then the Theoretical VValue for the option is set by using:

Theoreti cal Val ue(Val uel);

When writing other analysis techniques, use this word to obtain the Theoretical Value
of the option. Example instructions are shown below.

Val uel = Theoretical Val ue of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Delta(num)

This reserved word is used in the Pricing Model to set the Delta of the option. When this
reserved word is used in another analysis technique, it is used to obtain the Delta of the
option.

Syntax:
Delta(hum)

Parameters:)))))
Num is a numeric expression representing the Delta of the option. This parameter is needed

only when setting the value in the Pricing Model, not when obtaining it.

Example:
For example, when writing a Pricing Model, if the value of Delta is stored in the variable

Valuel, then the Delta for the option is set by using:
Del t a(Val uel);

EasyLanguage for OptionStation Writing OptionStation Models 229

When writing other analysis techniques, these instructions obtain the Delta for the
option:

Val uel = Delta of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Gamma(num)

This reserved word is used in the Pricing Model to set the Gamma of the option. When this
reserved word is used in another analysis technique, it is used to obtain the Gamma of the
option.

Syntax:
Ganma(num

Parameters:
Num is a numeric expression representing the Gamma of the option. This parameter is need-
ed only when setting the value in the Pricing Model, not when obtaining it.

Example:
For example, if in a Pricing Model the value of Gamma is stored in the variable Valuel,

then the Gamma for the option is set by using:

Ganmma(Val uel) ;
When writing other analysis techniques, these instructions obtain the Gamma for the
option:

Val uel = Gamma of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Rho(num)

This reserved word is used in the Pricing Model to set the Rho of the option. When this
reserved word is used in another analysis technique, it is used to obtain the Rho of the
option.

Syntax:
Rho(num

Parameters:
Num is a numeric expression representing the Rho of the option. This parameter is needed
only when setting the value in the Pricing Model, not when obtaining it.

Example:
For example, if in a Pricing Model the value of Rho is stored in the variable Valuel, then
the Rho for the option is set by using:

Rho(Val uel);

230 Writing OptionStation Models CHAPTER 5

When writing other analysis techniques, these instructions obtain the Rho for the
option:

Val uel = Rho of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Theta(num)

This reserved word is used in the Pricing Model to set the Theta of the option. When this
reserved word is used in another analysis technique, it is used to obtain the Theta of the
option.

Syntax:

Thet a(num

Parameters:
Num is a numeric expression representing the Theta of the option. This parameter is needed
only when setting the value in the Pricing Model, not when obtaining it.

Example:
For example, if in a Pricing Model the value of Theta is stored in the variable Valuel, then
the Theta of the option is set by using:

Thet a(Val uel);
When writing other analysis techniques, these instructions obtain the Theta for the
option:

Val uel = Theta of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Vega(num)

This reserved word is used in the Pricing Model to set the Vega of the option. When this
reserved word is used in another analysis technique, it is used to obtain the VVega of the op-
tion.

Syntax:
Vega(num

Parameters:
Num is a numeric expression representing the VVega of the option. This parameter is needed
only when setting the value in the Pricing Model, not when obtaining it.

Example:
For example, if in a Pricing Model the value of Vega is stored in the variable Valuel then
it can be set by using:

Vega(Val uel);

EasyLanguage for OptionStation Writing OptionStation Models 231

When writing other analysis techniques, these instructions obtain the Vega for the
option:

Val uel = Vega of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

ModelVolatility(num)

This reserved word is used in the Volatility Model to set the volatility of the option. When
this reserved word is used in another analysis technique, it is used to obtain the volatility of
the option.

Syntax:
Model Vol atility(num

Parameters:
Num is a numeric expression representing the modeled volatility of the option. This param-
eter is needed only when setting the value in the Volatility Model, not when obtaining it.

Example:
For example, if in a Volatility Model the volatility value is stored in the variable Valuel,

then the volatility of the option is set by using:
Model Vol atility(Val uel);

The following expression can be used in order to assign the volatility of an option to a vari-
able in a Pricing Model:

Val uel = Model Vol atility of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Ask(num)

This reserved word is used in the Bid/Ask Model to set the Ask of the option. When this
reserved word is used in another analysis technique, it is used to obtain the Ask of the
option.

Syntax:
Ask(num

Parameters:
Num is a numeric expression representing the modeled Ask of the option. This parameter is
needed only when setting the value in the Bid/Ask Model, not when obtaining it.

Example:
For example, if in a Bid/Ask Model the Ask value is stored in the variable Valuel, then the

Ask value is set by using:
Ask(Val uel);

232 Writing OptionStation Models CHAPTER 5

The following expression can be used in order to assign the Ask of an option to a variable
in a Pricing Model; for example:

Val uel = Ask of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

Bid(num)

This reserved word is used in Bid/Ask Models to set the Bid for the option. When this
reserved word is used in another analysis technique, it is used to obtain the Bid of the
option.

Syntax:
Bi d(num

Parameters:
Num is a numeric expression representing the modeled Bid of the option. This parameter is
needed only when setting the value in the Bid/Ask Model, not when obtaining it.

Example:
For example, if in a Bid/Ask Model the Bid value is stored in the variable Valuel, then the

Bid value is set by using:
Bi d(Val uel);

The following expression can be used in order to assign the Bid of an option to a variable
in a Pricing Model; for example:

Valuel = Bid of option ;

Notice the use of the qualifier Of Option. For information on qualifiers, see the section
earlier in this chapter, titled, “Reading OptionStation Data.”

ModelPrice

ModelPrice is used in all three models (Pricing, Bid/Ask, and Volatility) to refer to the
price of the underlying asset when performing future-time analysis (for more
information, see the previous section titled, “The Price Modeling Engine”).

Syntax:
Model Price data alias

Parameters:
None; however, you must use the data alias Of Asset (Of is a skip word that makes the
expression easier to read).

Notes:
It is very important to use ModelPrice whenever referring to the price of the underlying

asset in any of the models; it will be used in the future-time analysis performed by the
Price Modeling Engine (for example, when creating Position Charts).

EasyLanguage for OptionStation Writing OptionStation Models 233

When you use this reserved word, its value will change as necessary in order to obtain
the Theoretical Values of the positions in the future-time analysis, thus generating P/L
figures for any number of different values of the underlying asset.

Example:
For example, the following expression can be used in order to assign the price of the under-
lying asset to a variable in a Pricing Model:

Val uel = Model Price of asset ;

TargetType

This reserved word is only valid in Pricing Models. It returns a numerical value
corresponding to the step of the Price Modeling Engine for which the Pricing Model is
being called.

Syntax:
Tar get Type

Parameters:
None.

Notes:
This reserved word returns one of these four values:

0 Theoretical Value and Greek calculations
1 MIV values on raw data

2 MIV values for Bid/Ask modeled values
3 Position Search Engine call

Example:

For efample, if there are calculations that are specific to when the Market Implied Volatil-
ity values of the raw data are calculated, and are not necessary for the rest of the process,
you can use an IF-THEN statement with TargetType. The following IF-THEN statement
performs the instructions only when the Pricing Model is being called to calculate the MIV
values on the raw data:

I f Target Type = 1 Then Begin
{EBasyLanguage instruction(s) here}
End;

FirstOption

This reserved word is only valid in Volatility Models. It will return a true/false value. If the
option being evaluated is the very first analyzed, then this reserved word will return True;
if it is any other option, it will return False.

234 Writing OptionStation Models CHAPTER 5

Syntax:
FirstOption

Parameters:
None.

Notes:
This reserved word speeds up calculations that need to be performed only once for an entire
option chain.

Example:
For example, if the analysis is using a fixed volatility for all options, the volatility should

only be calculated for the first option; the resulting value can be used for the rest of the op-
tions instead of calculating the volatility as many times as there are options. In
EasylLanguage, you could write a Volatility Model in the following way:

If FirstOption Then Begin
{Volatility calculations here, the resulting value is
assigned to gl obal variable Gwal uel}

End;

Model Vol atility(Gwal uel);

Notice that in the above example, GVValuel is an OptionStation global variable. For a dis-
cussion of global variables, see the next section, “OptionStation Global Variables.”

TickType

TickType will return a different value depending on whether the calculation of the Price
Modeling Engine and indicators were initiated by a new price of the underlying asset, an
option, or a modeled tick.

Syntax:
Ti ckType
Parameters:
None
Notes:
This reserved word returns one of these four values:
0 Asset (stock or index)
1 Future
2 Option
3 Model

This reserved word enables you to optimize your EasyLanguage calculations for speed; you
can control when the analysis technique performs its calculations.

Example:
For example, in order to perform certain calculations only when the underlying asset ticks

(stock, index, or future), and to ignore the calculation when an option ticks, you can write:

EasyLanguage for OptionStation OptionStation Global Variables 235

If TickType = 0 OR Ti ckType = 1 Then Begin
{ EasylLanguage instruction(s) here }
End;

OptionStation Global Variables

Option analysis calculations are very computationally intense. One of the main reasons op-
tion analysis is so demanding is that all three models (Pricing, Volatility, and Bid/Ask) have
to be called for each option available every time new data is received. However, some of
the calculations are redundant and can be avoided.

For example, some option analysis techniques use a general volatility value for all options
(instead of a different volatility value for each option). In this case, calling the Volatility
Model for each option would be redundant and a waste of resources. Also, modeled Bid and
Ask values can use skew information generated in the Volatility Model.

Instead of duplicating these complex calculations, you can use placeholders in the models
that maintain their value across all options and/or across OptionStation EasyLanguage doc-
uments. These placeholders are called OptionStation Global Variables.

There are three different types of OptionStation Global variables: Pricing Model Global
Variables, Volatility Model Global Variables, and Bid/Ask Model Global Variables. Each
is discussed next.

236 OptionStation Global Variables CHAPTER 5

Pricing Model Global Variables

The values of the Pricing Model Global Variables can only be set in Pricing Models, but
they can be read from Volatility and Bid/Ask Models, Search Strategies, and indicators.

Syntax:
GPVal ueNum

Parameters:
Num is a number 0 through 99.

Notes:
Global variables are pre-declared; you do not have to declare them using a Declaration
Statement.

Example:
For example, a Pricing Model can be written such that it calculates the dividend adjustment
to make to the asset price for dividends once for the first option only and then uses this val-
ue for all other options (the instructions below are part of the BS Annual Dividend Pricing
Model):
If FirstOption Then Begin
D vOfset = OS_Annual Di vi dend(AnnDi v, Tl nDays, |ntRate)
GPVal ue2 = D vOF f set
End;

Price = Price - GPVal ue2 ;

EasyLanguage for OptionStation OptionStation Global Variables 237

Volatility Model Global Variables

The values of the Volatility Model Global Variables can only be set in Volatility Models,
but they can be read from Pricing and Bid/Ask Models, Search Strategies, and indicators.

Syntax:
Gwal ueNum

Parameters:
Num is a number 0 through 99.

Notes:
Global variables are pre-declared; you do not have to declare them using a Declaration
Statement.

Example:
For example, when calculating the volatility for an option chain, you can calculate this val-
ue once and make it accessible to all other options by using Volatility Global Variables:

If FirstOption then Begin

{EBasyLanguage I nstructions to calculate volatility here}
Gwal uel = Qur\Volty ;

End ;

Model Vol atility(Gwal uel) ;

238 OptionStation Global Variables CHAPTER 5

Bid/Ask Model Global Variables

The values of Bid/Ask Model Global Variables can only be set in Bid/Ask Models, but they
can be read from Pricing and Volatility Models, Searches Strategies, and indicators.

Syntax:
GBVal ueNum

Parameters:
Where num is a number O through 99.

Notes:
Global variables are pre-declared; you do not have to declare them using a Declaration
Statement.

Example:
For example, Bid/Ask Models can store intermediate calculations that might be useful for
indicators and Search Strategies by using global variables:

GBVal uel = Val uel ;

CHAPTER 6

EasyLanguage and Other Languages

EasylLanguage enables you to use functions residing in dynamic-link libraries (written in
C or C++) in your trading signals, analysis techniques, and functions. This means that in
addition to all the EasyLanguage reserved words and functions, you also have at your
disposal any function in a DLL that is written in C or C++.

TradeStation Technologies provides an EasyLanguage DLL Extension Kit, which
consists of four files and detailed documentation. This chapter introduces you to the kit
and discusses the use of DLL functions with EasyLanguage.

This is an advanced topic and this chapter assumes you know C or C++ as well as how
to create a Windows DLL file.

In This Chapter

m Defining a DLL Function.................... 236 ® More About the EasyLanguage DLL

. . Extension Kit.........ccccooveenniicinnnenns 239
m Using Functions from DLLs 238 xienston K

236 Defining a DLL Function CHAPTER 6

Defining a DLL Function

Before you can call a DLL function from EasyLanguage, you must declare the DLL using
a DLL Function Declaration statement.

Syntax:
Defi neDLLFunc: “DLLNAME. DLL”, Return Type, “FunctionNane”,

Paraneters ;

DLLNAME.DLL is the name of the DLL where the function resides, Return Type is the type
of expression the function will return, FunctionName is the name of the function as defined
in the DLL, and Parameters is the list of parameters expected by the function (each param-
eter separated by a comma).

It is very important to remember that 32-bit DLLs use case-sensitive exported functions de-
clared using _cdecl, __stdcall , or fastcall. For DLLs to be compatible with Easyl anguage,
exported functions should be created using all uppercase letters and be declared as _stdcall.
These exported functions must be listed within the EXPORTS section of the DLL’s .DEF
file. Using “_declspec (dllexport)” from the function’s prototype is not sufficient for
EasylLanguage to locate a DLL’s exported functions.

For example, the following statement declares a function called MessageBeep which
resides in the DLL called USER32.DLL. It returns a boolean (true/false) value, and it
expects one parameter, int.

Defi neDLLFunc: “USER32.DLL", bool, “MessageBeep”, int;

Data Types

EasyLanguage supports a number of valid data types that may be used to send and
receive information to functions contained in DLLs. Following is a list of the data types
supported by Easyl anguage:

Fundamental Data Types:

BYTE 1 byte integer data type.

char 1 byte integer data type.

int 4 byte signed integer data type.
WORD 2 byte unsigned integer data type.
long 4 byte signed integer data type.
DWORD 4 byte unsigned integer data type.
float 4 byte floating point data type.
double 8 byte floating point data type.

BOOL 4 byte boolean data type.

EasyLanguage and Other Languages Defining a DLL Function 237

Variants:

UNSIGNED LONG Same as DWORD.
VOID Means “No returned value”.

Pointer Types:

LPBYTE Pointer to a BYTE.

LPINT Pointer to an int.

LPWORD Pointer to a WORD.

LPLONG Pointer to a LONG.

LPDWORD Pointer to a DWORD.

LPFLOAT Pointer to a float (in C++ float FAR).
LPDOUBLE Pointer to a double (in C++ double FAR).
LPSTR Pointer to a char.

All pointers are 32-bit pointers and EasyLanguage treats each of them in the same manner.

Also, it is very important to remember that all values in EasyLanguage are floats, except
for the Open, High, Low and Close values, which are integers. To manipulate these prices,
you will want to send to the function the price scale of the symbol being plotted.

For example, if a stock has a price scale of 1/1,000 and the last price was 105.125, this price
will be sent to a DLL as 105125. For the DLL to know how to read this price, you need to
send the value in the reserved word PriceScale, which in this case, returns a value of 1,000.

Using Pointer Data Types

Pointer data types are designed to pass the memory addresses of and data point to a DLL

function. All pointers used in EasyLanguage are treated as 32-bit pointers. To obtain the

pointer of any data element in EasyLanguage, the user must precede the data element with
an ampersand (&).

For example, in order to refer to the address of the open, high of one bar ago and the value
of variable valuel of two bars ago you would use the following expressions:

&Open Address of the open price of the current bar.
&High[1] Address of the high price of the previous bar.
&Valuel[?] Address of the Valuel variable of two bars ago.

EasyLanguage currently supports addresses for the following data objects:
m All Date, Time, Open, High, Low, Close, Volume, and Openint values.
m All true/false and numeric variables including predefined variables.

= All true/false and numeric arrays.

238 Using Functions from DLLs CHAPTER 6

Text strings are passed by address as a default when the LPSTR parameter type is used. Do
not change the size of the passed string within your DLL, as this can cause unpredictable
results.

The following example uses the correct syntax for including a pointer data type as one of
the parameters sent to a function from a DLL in a statement.

Defi neDLLFunc: “C:\UserDLL\ MyLi b. DLL",i nt,"“M/Func”, LPLONG

If MyFunc(&C ose) > 0 Then
Buy next bar at market;
It is very important to remember that pointers cannot be correctly assigned to a variable or

an array element. Because neither a variable nor an array element has the necessary accu-
racy to hold a pointer, you should not try to store a pointer for later use.

PROHIBITED: The following example is prohibited in the current version of
EasylLanguage as it produces an unpredictable result when Valuel is referenced at a
later time.

Val uel = &QOpen;

Also, do not assume that there is any relationship between two memory addresses. For ex-
ample, do not assume &Open[1] is equal to &Open[0] plus 4. You should always use the
provided ELKIT32 Functions to perform pointer calculations.

Using Functions from DLLs

Once it is defined using DefineDLLFunc statement, a DLL function can be called from
EasyLanguage in much the same way as any other EasyLanguage function is used. A DLL
function can be called within an expression or as a distinct statement if the return value is
not used. To call a DLL function, the user must specify the function name and enclose all
parameters within parenthesis. If multiple parameters are used, they must be separated by
commas.

For example, in order to use a function called MessageBeep, which is included in
USER32.DLL the following statements can be used:

Def i neDLLFunc: “USER32.DLL", bool , “MessageBeep”,int;

If Open > C ose Then
MessageBeep(0);

A second example follows:
Def i neDLLFunc: “MYLIB.DLL",int,“MAverageFunc”, mnultiple;

Val uel = MyAver ageFunc(“Open = ", (LONG Open);

EasyLanguage and Other Languages More About the EasyLanguage DLL Extension Kit 239

The return value of the function MyAverageFunc is assigned to Valuel. Notice the data
type specifier (LONG) is included before the second parameter's value. This specifier is
necessary because MyAverageFunc declares multiple parameter fields. In this instance, a
data type specifier must precede each parameter. The exception to this rule is when a text
string is used as a parameter of a DLL function as in Example 2. With this exception in
mind, we know that the data type must be LPSTR. Therefore, no data type specifier is need-
ed, even when MULTIPLE is used. This is why there is no data type specifier before the
string “Open =",

More About the EasylLanguage DLL Extension Kit
The EasyLanguage DLL Extension Kit consists of four files:
s ELKIT32.DLL
s ELKIT32.H
s ELKITVC.LIB (for use with VC++ only)
m ELKITBOR.LIB (for use with Borland C++ Builder only)

These files are located in the \Omega Research\Program directory, and the
documentation for the kit is provided on the program CD.

The EasyLanguage Toolkit Library (ELKIT32.DLL) is a dynamic-link library that pro-
vides useful functions that can be called from any user DLL. It is commonly used to find
the address of an offset of an EasylLanguage data object from within a user DLL.

For the most up to date documentation for the EasyLanguage DLL Extension Kit, review
the online documentation available on the program CD. To install the documentation,
browse the program CD and look for a folder called DEVKIT. Run the file setup.exe under
this folder to install the documentation.

240 More About the EasylLanguage DLL Extension Kit CHAPTER 6

EasyLanguage Syntax Errors 241

APPENDIX A

EasylLanguage Syntax Errors

Syntax errors are produced when verifying an EasyLanguage statement that is not under-
stood or expected by the PowerEditor. Following is a list of all syntax errors and their de-
scription, listed by error number. Each entry includes the description of the error,
probable causes of the error, and examples of the correct and incorrect syntax for the
offending statement or instruction (where applicable).

61 "Word not recognized by EasyLanguage."

This error is displayed whenever a word is not recognized by the PowerEditor. For exam-
ple, if it is not an EasyLanguage reserved word; EasyLanguage function, or a declared user
defined variable, array, or input name.

62 "Invalid number."

The PowerEditor displays this message whenever it finds a typographical error in a num-
ber. For example, if a letter is inserted by mistake in a number, the number will be high-
lighted and this error will be displayed. An example of an invalid number is 100.b4.

63 "Number out of range."

The PowerEditor displays this error whenever it finds a number that is outside the support-
ed range (a number which is too big). The following statement will produce this error:

Val uel = 99999999999999999999 ;

65 "Invalid variable name."

The PowerEditor displays this error whenever it finds an invalid name in an variable dec-
laration statement. Variable names cannot start with a number nor any special character
other than the underline ().

For example, this error will be generated when the following statement is verified:
Variable: $MyVari abl e(0);
66 "Invalid input name."

The PowerEditor will display this error whenever it finds an invalid name in a input dec-
laration statement. Input names cannot start with a number nor any special character other
than the underline ().

For example, this error will be generated when the following statement is verified:

I nput: $Myl nput (0);

242

APPENDIX A

70 "Array size cannot exceed 2 billion elements."

Arrays can have up to 2 billion elements. The number of elements is calculated by multi-
plying all the dimensions of the array. For example, an array declared using the following
statement will have 66 elements:

Array: MyArray[10, 5] (0);
This arrays will have rows 0 through 10 and columns 0 though 5; in other words, 11 rows

and 6 columns. The resulting number from multiplying the dimensions of the array can’t
exceed 2 billion.

74 "Invalid array name."

The PowerEditor displays this error whenever it finds an invalid name in an array decla-
ration statement. Array hames cannot start with a number nor any special character other
than the underline ().

For example, this error will be generated when the following statement is verified:

Array: $SMyArray[10](0);
90 "The first jump command must be a begin: (\nb,\\ph,\wh)"

This error is displayed when the PowerEditor finds an end jump command without a begin
jump command in a text string. The end jump commands are:

\ he

\ pe

\ we

Before these commands, a begin jump command must be used.

Note: when specifying a file name for the Print() or FileAppend() words, files that start
with any of the jump commands will produce this error. So a file name “c:\hello.txt”” will
produce this error as part of the name \he.

91 "You cannot nest jump commands within other jump commands."

Jump commands are used in commentary-related text string expressions to highlight
words, and create links to the on line help. Jump commands cannot be nested; that is, there
cannot be multiple starting jump commands without having matching end jump com-
mands.

EasyLanguage Syntax Errors 243

92 "You must terminate all jump commands with ends (\\he,\\pe,\\we)"

This error is displayed when the PowerEditor finds a begin jump command without a end
jump command in a text string. The begin jump commands are:

\ hb
\ pb
\ wh

After these commands, an end jump command must be used.

Note: when specifying a file name for the Print() or FileAppend() words, files that start
with any of the jump commands will produce this error. So a file name “c:\hello.txt” will
produce this error as part of the name is \he.

151 "This word has already been defined."

User defined words (such as variables, arrays, and inputs) need to have unique names. This
error is generated when a user defined word is defined more than once, such as in the fol-
lowing example:

I nput: vac(10);
Variable: vac(0);
154 "=, <>, >, >, <, <= expected here."

This error is displayed when the PowerEditor evaluates complex true/false expressions
and it finds an error within the expression.

Condi tionl = Condition2 = Cl ose;

The intention of this statement was to assign a complex true-false value to the variable
Conditionl, by using Condition2 and a comparison that involves the Close. A
corrected version would look like this:

Condi tionl = Condition2 AND Open = C ose;
155 "'(' expected here."

The left parenthesis was expected before the highlighted word; for example, if you are us-
ing a function that requires parameters, and no parameters are listed.

Val uel = Average + 10;

In this example, the highlight signifies that a parenthesis was expected before the ‘+’
sign.

244

APPENDIX A

156 ") expected here"

The right parenthesis was expected after the highlighted word; for example, if you are us-
ing a function that requires parameters, you must enclose them in parentheses.

Val uel = Average(d ose, 10;

Here, the highlight signifies that a closing parenthesis was expected before the’;’
157 "Arithmetic (numeric) expression expected here."

This error is displayed whenever the PowerEditor is expecting a number or a numeric ex-
pression and it finds a true-false expression, string value, or any other keyword that does
not return a numeric expression. For example, the Average() function expects two numeric
expressions, so the following:

Val uel = Average(Conditionl, 10);

generates an error since Conditionl is a true-false expression.
158 "An equal sign '=' expected here."

This error is displayed if the equal sign is omitted when assigning a value to a variable,
array, or function (writing an assignment statement).

For example, the following statement will cause an error:

Val uel 10;

and would be corrected by adding an equal sign, as in:
Val uel = 10;
159 "This word cannot start a statement."

Not all words can be used to start a statement. For example, the data word Close cannot
be used to start a statement. Usually, reserved words that generate some action are used to
start statements such as Buy, Plot1, or If-Then.

160 "Semicolon (;) expected here."

All EasyLanguage statements must end with a semicolon. Whenever the PowerEditor
finds a word or expression that can be interpreted as a new line, it will place the cursor
before this expression and show this error. For example, the following statements will pro-
duce this error:

Val uel = Cl ose + Open|
Buy Next Bar at Val uel Stop;

Given that the word Buy is always used at the beginning of a statement to place a trading
order, a semicolon is required after the Open.

EasyLanguage Syntax Errors 245

161 "The word THEN must follow an If condition."

This error is displayed whenever the word Then is omitted from a If-Then statement. The
word Then must always follow the condition of the If-Then statement. The correct syntax
for an If-Then statement is:

If Conditionl Then {any operation}
162 "STOP, LIMIT, CONTRACTS, SHARES expected here."

This error is displayed by the PowerEditor if it finds a numeric expression following a
trading verb without including one of the words listed above. A numeric expression can
be used in a trading order to determine the number of shares (or contracts) and/or to spec-
ify the price of the stop or limit order. For example:

Buy Next Bar at Low - Range;

is incorrect because it does not include a trading verb after the price Range. To be
correct, you could add the word Stop or Limit, as in:

Buy Next Bar at Low - Range Stop;
163 "The word TO or DOWNTO was expected here."

This error is displayed whenever writing a For loop and the word to or downto is omitted.
The correct syntax for a For loop is:

For Valuel = 1 To 10 Begin
{st at ement s}
End;

165 "The word BAR or BARS expected here."

This error is displayed whenever referencing to a value of a previous bar where the word
Bar is omitted. For example, the following statement will cause this error:

Val uel = Close of 10 Ago;

The correct syntax is:
Val uel = Close of 10 Bars Ago;
166 "The word AGO expected here."

This error is displayed when the PowerEditor finds a reference to any expression for a
number of bars ago without using the phrase Bars Ago. For example:

Val uel = Close of 10 Bars;

produces this error because the word Ago is missing. The correct syntax for this expression
is:

Val uel = Close of 10 Bars Ago;

246

APPENDIX A

167 "’} was expected before end of file."

In order to add comments to your EasylLanguage, it is necessary to enclose the commen-
tary text in the curly braces ‘{” and ‘}’. An error message is displayed when a left curly
brace is found without a matching right curly brace.

{ this was witten by Trader Joe
If Cose > Highest(H gh, 10)[1] Then
Buy Next Bar at Market; |
Above, the right curly brace was omitted somewhere before the vertical cursor. In this ex-
ample a right curly brace should have been placed after the word ‘Joe’.
168 " '['was expected here."

When declaring, assigning, or referencing array values you are required to use the squared
braces to specify the array element(s). This error is displayed if the left squared brace is
not used when working with an array.

Array: MyArray(10);
For example, here the highlight shows that a squared brace, corresponding to the declared
number of array element, is expected before the parenthesis.
169 "] was expected here."

When working with bar offsets or arrays, the bar or array index must be enclosed in
squared braces. This message is displayed if the right squared brace is missing.

Valuel = Close[10 * 1.05;

In this example, the highlight indicates that a squared bracket should be placed somewhere
before the semicolon. Note that since the PowerEditor is expecting a numeric value in the
squared braces, it places the highlight after the last character in a numeric expression.
However, in this case, the right bracket was probably intended to be placed after the num-
ber 10.

170 "Assignment to a function not allowed."

This error is displayed when you attempt to assign a value to a function. By definition, a
function is an EasyLanguage procedure that returns a value, so it is not possible to assign
a different value to a function (except when returning a value from within a function).

Average = 100. 1245;

In this example, the highlighted function name indicates that you cannot assign it a value.

EasyLanguage Syntax Errors

247

171 "Avalue was never assigned to user function."

By definition, a function is a set of statements that return a value. This error will be dis-
played when editing or creating a function and the PowerEditor finds that no value has

been assigned to the function. A statement similar to the following must be included in

every function:

MyFunction = Val ue;

where MyFunction is the name of the function and Value is the expression to be returned
when the function is referenced.

172 "Either NUMERIC, TRUEFALSE, STRING, NUMERICSIMPLE, NUMERICSERIES,
TRUEFALSESIMPLE, TRUEFALSESERIES, STRINGSIMPLE, or STRINGSERIES expected."

When declaring the inputs in a function it is necessary to specify the type of each input.
This error is generated when any word or value, other than a valid input type, is used when
declaring function inputs.

174 "Function not verified."

In order for an analysis technique to verify, all functions used by the analysis technique
must be verified as well. This error is displayed if there is a function that is not verified
and you attempt to verify the analysis technique.

In order to solve this, open the function and verify it, or run “Verify All” from the Pow-
erEditor menu.

175 "''or') expected here."

This error is displayed when listing a number of elements in parentheses and a semicolon
is read before the list is finished.

Val uel = Average(d ose, 10;
In this case, the highlight indicates that either more parameters (separated by a comma) or
a right parenthesis were expected before the semicolon.
176 "More inputs expected here."

This error is displayed whenever referencing a function or an included signal without
specifying enough inputs. For example:

Val uel = Average(d ose);

displays an error because only one input is specified while the Average function requires
two inputs: 1) the price to be averaged and 2) the number of bars.

248

APPENDIX A

177 "Too many inputs supplied."

The PowerEditor displays this error when too many inputs are supplied for a function. For
example, the Average function requires only two inputs, so the following statement will
produce this error:

Val uel = Average(d ose, 10, 5);

The correct syntax would be
Val uel = Average(C ose, 10);
180 "The word #END was expected before end of file."

The compiler directive #END must be used to indicate the end of a group of statements

included in the alert or commentary only section of an analysis technique. The alert and

commentary compiler directives will allow certain instructions to be executed only when
the alert or commentary is enabled.

181 "There can only be 10 dimensions in an array."

Arrays can have up to 10 dimensions. The correct syntax for creating a multi-dimensional
array is:

Array: MyArray[10, 10, 10] (0);

where this statement creates a three dimensional array of 11x11x11
183 "More than 100 errors. Verify termination.”

When the PowerEditor is verifying a document for correctness, it will continue to evaluate
expressions until it finds 100 errors. These errors will be found in the error log once the
verification process is finished. If the PowerEditor finds more than 100 errors it will stop
the process and will display this message.

185 "Either HIGHER or LOWER expected here."

When specifying the execution instructions for an order in a signal, it is possible to use the
words or Higher and or Lower as synonyms to stop and limit. This error occurs when the
word or is found in an order without the words Higher or Lower. The following is the
proper syntax for this statement:

Buy Next Bar at Low - Range or Lower;
186 "Input name too long."

Input names in any PowerEditor analysis technique can be up to 20 characters long. This
error is displayed by the PowerEditor whenever an input has a name that has more than 20
characters.

187 "Variable name too long."

Variable names can have up to twenty characters. This error is displayed whenever a vari-
able is declared with a name that contains more than twenty characters.

EasyLanguage Syntax Errors 249

188 "The word BEGIN expected here."

This error is generated whenever the PowerEditor is expecting a block statement. For ex-
ample, all loops require Begin and End block statements, so writing the following will
generate this error:

For Valuel =1 To 10
Val uel0 = Val uel0 + Vol une[Val uel];

The correct syntax is:

For Valuel = 1 To 10 Begin
Val uel0 = Val uel0 + Vol une[Val uel];
End;
189 "This word not allowed in a signal."

The word highlighted by the PowerEditor is not allowed in a Signal. Words like Plot1,
TheoreticalValue, ModelVolatility, etc., are not allowed in Signal.

190 "This word not allowed in a function."

The word highlighted by the PowerEditor is not allowed in a function. Words like Plot1,
Buy, Sell, etc., are not allowed in functions.

191 "This word not allowed in a study."

The word highlighted by the PowerEditor is not allowed in a study. Words like Plot1, Buy,
Sell, etc., are not allowed in studies.

192 "This word not allowed in an ActivityBar."

The word highlighted by the PowerEditor is not allowed in an ActivityBar study. Words
like Plot1, Buy, Sell, etc., are not allowed in ActivityBar studies.

193 "Comma (,) expected here."

Commas are used to separate elements in a list; for example when declaring multiple in-
puts or variables, or when listing the parameters of a function.

This error will be generated whenever the PowerEditor finds two words, that seem to be
part of the list, which are not separated by a comma. For example, in the following:

I nputs: Price(d ose) | Lengt h(10);

the comma after the first input is missing. The PowerEditor places the vertical cursor at
the location where it was expecting a comma.

250

APPENDIX A

195 "Matching quote is missing."

All text string expressions need to be within double quotes. This error will be displayed
whenever there are not matching quotes around a text string expression. For example, the
following statement will produce this error:

Variable: Txt(“ ”);

Txt = “This is an exanpl e;

because there is a missing quote to the right of the text expression. The correct syntax for
this expression is:

Variable: Txt(“ ");
Txt = “This is an exanple”;
197 "Signal not verified."

In order for a trading signal to verify, any signals referenced by the trading signal through
the use of the IncludeSignal reserved word must be verified as well. This error is displayed
if you attempt to verify a trading signal that references an unverified signal.

In order to solve this, open the referenced signal and verify it, or run “Verify